
HEVT/LETT.PACKAFID

-,@[JRNIAL FEEIFITJAFIY 199O

HEVT/LETT.PACKAtrID

",@[JRNIAL February 1990 Volume 41 . Number 1

Articles

6 An Overview of the HP OSI Express Card, by William R. Johnsono
O The HP OSI Express Card Backplane Handler, by Glenn F. Talbott
\,

15 Custom VLSI Chips for DMA

.f Q CONE: A Software Environment for Network Protocols, by Steven M. Dean, David A.
I L) Kumpf, and H. Michael Wenzel

zgr^i1i;lper
Layers of the HP OSI Express Card Stack, by Kimbatt K. Banker and Michaet

r) n lmplementation of the OSI Class 4 Transport Protocol in the HP OSI Express Gard,
*JO ov'n"x A. Pugh

45i:Y;;ii:::::Desisn
and resting tor the HP osr Express card, by Judith A. smith

49 The OSI Connectionless Network Protocol

tr 1 HP OSI Express Design for Performance, by Elizabeth P. Bottolotto
\ r l

59
tn" HP OSI Express Card Software Diagnostic Program, by Joseph R. Longo, Jr.

Edtor, Richard P Dolan . Associate Editor Chares L Leath . Assistanl Editor, Gene N.4. Sadoff . Art Dlreclor, Photographer Arvid A Danieson
Support Supervisor, Susan E. Wright . Administratve Services, Diane W Woodworth . Typography Anne S. LoPrest . European Production Supervlsor Sonja Wirth

2 Hrwrsfi pACKARD JoUFTNAL FEBRUARv 1990 O Hewlett-Packard Comoanv 1990 Printed in U.S.A

6 7
t"OPort Features ot the HP OSI Express Card , by Jayesh K. Shah and Charles L. Hamer

7 2'Xi:::::::":X'^::;;"r;:$,"'
oSr Express card's prorocor stack, bv Neit M

80
HiSh-Speed Lightwave Signal Analysis, by Christopher M. Miiler

84 A Broadband Instrumentation Photoreceiver

1f O Linewidth and Power Spectral Measurements of Single-Frequency Lasers, by
J Z Douglas M. Baney and Wayne V. Sorin

Departments

4 In this lssue
5 Cover
5 What's Ahead

77 Authors

The Hewlett-Packard Journal is published bimonthly by lhe Hewlett-Packard Company to recognize technical contributions made by Hewlett-Packard (HP) personnet. White
the information found in this publication is believed lo be aeurate, the Hewlett-Packard Company makes no warranties, express or implied, as to the accuracy or reliabitity ol
suchinformation.TheHew|ett.Packardcompanydisc|aimsa||warrantiesofmerchantabi|i
including but not limited to indirect, special, or consequential damages, attorney's and expert's fees, and @urt costs, arising oul of or in connection with this publication.

Subscdplions: The Hewlett-Packard Journal is dislributed free of charge to HP research, design, and manutacturing engineering personnel, as wett as to qualified non-HP
individuals, libraries, and educa
on lhe back mver that is closest to you. When submitting a change of address, please include your zip or postal code and a copy ot your old label.

Submissions: Although articles in the Hewlen-Packard Journal are primarily authored by HP employees, articles lrom non-HP authors dealing with HP-related research or
$lutions to technical problems made possible by using HP equipment are also considered tor publi€tion. Please contact the Editor before submitting such articles. Ate, the
Hew|ett.PackardJoUrna|encoUragestechnica|discussionsofthetopicspresentedinrecentartic|esandmaypUblish|eersexpectedtob
b€ brief, and are subject to editing by HP.

Copyright o 1990 Hewlett-Packard Company. All rights reserved. Permission to copy without fee all or part of this publication is hereby granted provided that 1) the copies
are not made, used, displayed, or distributed for @mmercial advantage; 2) the Hewlett-Packard Company copyright notice and the title of the publication and date appear on
the copies; and 3) a notice stating that the copying is by permission of the Hewlen-Packard Company appears on the copies. Othemise, no portion ot this pubtication may be
pIoducedortransmittedinanyformoIbyanymeanS,e|ectronicormechanica|,inc|udingphotocopying,recording,orbyanyinformatio
permission of the Hewlett-Packard Company.

Please address inquiries, submissions, and requests to: Editor, Hewlett-Packard Journal. 32OO Hillview Avenue. Palo Alto. CA 94304. U.S.A.

FEBRUABy i 990 HEWLETT-pAcxaRo .touRruel 3

In this Issue
Open systems are systems that communicate with the outside world using

standard protocols. Because they communicate using standard protocols,
open systems can be interconnected and will work together regardless of
r 'h^ r ^^m^^hr r manr r faa+r r ra r { + l ram t rn r a r roar r r rhn ic annf ia r r r in^ a ^n m^t t l6 r
w r r q t w r l r P q r r y r r r q r r u r q v r u r E I r r r v q v v r r r P v l e t

system or network, the benefit of open systems is the freedom to choose
the best component for each function from the offerings of all manufacturers.
In 1983, the International Organization for Standardization (lSO) published
its Open Systems Interconnection (OSl) Reference Model to serve as a
master plan for coordinating all open systems activities. The OSI model

starts with a framework that organizes all intersystem communications functions into seven layers.
Specific protocols perform the functions of each layer. Any organization can have an open system
by implementing these standard protocols. The movement towards this model as the global
standard for open systems has steadily gained momentum. Hewlett-Packard, along with many
other manufacturers and the governments of many countries, is committed to the development
of standards and oroducts based on the OSI model.

The HP OSI Express card implements the OSI model for HP 9000 Series 800 computers. The
hardware and firmware on the card otf-load most of the processing for the seven-layer OSI stack
from the host computer. This not only gets the job done faster and improves throughput, but also
leaves more time for the host processor to service user applications. Although it's only a single
Series 800 l/O card, the HP OSI Express card implements many complex ideas and required a
major design effort that claims most of this issue. You'll find an overview of its design on page
6. The interface between the card driver (which is part of the host software) and the operating
system on the card is a set of firmware routines called the backplane handler; it's described in
the article on page 8. The card's architecture and most of its operating system are determined
by an HP concept called the common OSI networking environment, or CONE (see page 18).
CONE defines how the protocol firmware modules interact and provides system functions to
support the protocol modules. The top three layers of the OSI Express card protocol stack-the
application, presentation, and session layer modules-are described in the article on page 28.
These three layers share the same architecture and are implemented using tables. ln the protocol
module for the fourth OSI layer-the transport layer-are the important functions of error detection
and recovery, multiplexing, addressing, and flow control, including congestion avoidance (see
page 36). The bottom three OSI layers are the network, data link, and physical layers. The bottom
of the OSI stack on the OSI Express card is covered in the article on page 45. Because of the
number of layers in the OSI stack, data throughput is an important consideration in the design
of any OSI implementation. Performance analysis of the HP OSI Express card began in the early
design stages and helped identify critical bottlenecks that needed to be eliminated (see page 51).
As a result, throughput as high as 600,000 bytes per second has been measured. Troubleshooting
in a multivendor environment is also an important concern because of the need to avoid situations
in which vendors blame each other's products for a problem. Logging, tracing, and other support
features of the OSI Express card are discussed in the article on page 67. Finally, debugging and
final testing of the card's firmware are the subjects of the articles on pages 59 and 72, respectively.

4 HEWLETT-PACKARD JoURNAL FEBRUARY 1990

Both the use and the performance of fiber optic voice and data communications systems
continue to increase and we continue to see new forms of measuring instrumentation adapted
to the needs of fiber optic system design, test, and maintenance. The article on page 80 presents
the design and applications of the HP 71400A lightwave signal analyzer. This instrument is
designed to measure signal strength and distortion, modulation depth and bandwidth, intensity
noise, and susceptibility to reflected light of high-performance optical systems and components
such as semiconductor lasers and broadband photodetectors. Unlike an optical spectrum analyzer,
it does not provide information about the frequency of the carrier. Rather, it acts as a spectrum
analyzer for the modulation on a lightwave carrier. lt complements the lightwave component
analyzer described in our June 1989 issue, which can be thought of as a network analyzer tor
lightwave components. Using high-frequency photodiodes and a broadband amplifier consisting
of four advanced microwave monolithic distributed amplifier stages, the lightwave signal analyzer
can measure lightwave modulation up to 22 GHz. (This seems like a huge bandwidth until one
realizes that the carrier frequency in a fiber optic system is 200,000 GHz or more!) A companion
instrument, the HP 119804 liber optic interferometer (page 92), can be used with the analyzer
to measure the linewidth, chirp, and lrequency modulation characteristics of single-frequency
lasers. The interferometer acts as a frequency discriminator, converting optical phase or frequency
variations into intensity variations, which are then detected by the analyzer. Chirp and frequency
modulation measurements with the interferometer use a new measurement technioue called a
gated self-homodyne technique.

R.P. Dolan
Editor

Cover
This is an artist's rendition of the seven layers of the International Organization for Standardi-

zation's OSI Reference Model on the HP OSI Express card, and the communication path between
two end systems over a network.

What's Ahead
The April 1990 issue wil l feature the design of the HP 1050 modular l iquid chromatograph and

the HP OpenView network management software.

FEBFiUAFty 1 990 HEWLETT-pAcxnRo .touRnnr 5

An Overview of the HP OSI Express Card
The OSI Express card provides on an llO card the
networking services defined by fhe /SO OSI(Open Sysfems
lnterconnection) Reference Model, resulting in off-loading
much of the network overhead f rom the host computer. This
and otherfeatures sef fhe OSI Express cardapartfrom other
network implementations in existence today.

by William R. Johnson

HE DAYS WHEN A VENDOR used a proprietary
network to "lock in" customer commitment are over.
Today, customers demand multivendor network

connectivity providing standardized application services.
HP's commitment to OSl-based networks provides a path
to fill this customer requirement.

The ISO (International Organization for Standardization)
OSI (Open Systems Interconnectionl Reference Model was
developed to facilitate the development of protocol specifi-
cations for the implementation of vendor independent net-
works. HP has been committed to implementation of OSI-
based standards since the early 1980s. Now that the stan-
dards have become stable, OSl-based products are becom-
ing available. One of HP's contributions to this arena is the
OSI Express card for HP 9000 Series 800 computers.

The OSI Express card provides a platform for the protocol
stack used by OSI applications. Unlike other networking
implementations, the common OSI protocol stack resides
on the card. Thus. much of the network overhead is off-
loaded from the host, leaving CPU bandwidth available for
processing user applications. This common protocol stack
consists of elements that implement layers 1 through 6 of
the OSI Reference Model and the Association Control Ser-
vice Element (ACSE), which is the protocol for the seventh
layer of the OSI stack. Most of the application layer func-
tionality is performed outside the card environment since
applications are more intimately tied to specific user func-
tions (e.g., mail service or file systems). An architectural
view of the OSI Express card is given in Fig. 1, and Fig. 2
shows the association between the OSI Express stack and
the OSI Reference Model.

The series of articles in this issue associated with the
OSI Express card provides some insight into how the proj-
ect team at HP's Roseville Networks Division implemented
the card and what sets it apart from many other implemen-
tations currently in existence today. This article gives an
overview of the topics covered in the other articles and the
components shown in Fig. 1.

OSI Express Stack
The protocol layers on the OSI Express card stack provide

the following services:
Media Access Control (MAC) Hardware. The MAC
hardware is responsible for reading data from the LAN
interface into the card buffers as specified by the link/MAC
interface software module. All normal data packets des-

6 HEWLETT-pAcKARD JoURNAL FEBFUAHY 1990

tined for a particular node's address are forwarded by the
logical link control (LLC) to the network layer.
Network Layer. The network layer on the OSI Express card
uses the connectionless network service (CLNS). The OSI
Express card's CLNS implementation supports the end-sys-
tem-to-intermediate-system protocol, which facilitates
dynamic network routing capabilities. As new nodes are
brought up on the LAN, they announce themselves using
this subset of the network protocol. The service provided
by CLNS is not reliable and dictates the use of the transport
layer to provide a reliable data transfer service. Both the
transport layer and CLNS can provide segmentation and
reassembly capabilities when warranted.
Transport Layer Class 4. In addition to ensuring a reliable
data transfer service, the OSI Express transport is also re-
sponsible for monitoring card congestion and providing
flow control.
Session Layer. The OSI Express card's implementation of
the session layer protocol facilitates the management of an
application's dialogue by passing parameters, policing state
transitions, and providing an extensive set of service primi-
tives for applications.
Presentation Layer and Association Control Service Ele-
ment (ASCE). The OSI Express card's presentation layer
extracts protocol parameters and negotiates the syntax rules
for transmitting information across the current association.
Both ACSE and the presentation layer use a flexible method
of protocol encoding called ASN.1 (Abstract Syntax Nota-
tion OneJ. ASN.1 allows arbitrary encodings of the protocol
header, posing special challenges to the decoder. ASCE is
used in the transmission of parameters used in the estab-
lishment and release of the association.

OSI Express Protocols
The OSI protocols are implemented within the common

OSI networking environment (CONE). CONE is basically a
network-specific operating system for the OSI Express card.
The utilities provided by CONE include buffer manage-
ment, timer management, connection management, queue
management, nodal management, and network manage-
ment. CONE defines a standard protocol interface that pro-
vides module isolation. This feature ensures portability of
networking software across various hardware and,/or soft-
ware platforms. The basic operating system used in the
OSI Express card is not part of CONE and consists of a simple
interrupt system and a rudimentary memory manager.

Service requests are transmitted to CONE using the back-
plane message interface (BMI) protocol. Application re-
quests are communicated through the OSI user interface
to the CONE interface adapter (CIA). The interface adapter
bundles the request into the BMI format and hands i t off
to the system driver. The BMI converts message-based re-
quests, which are asynchronous, from the interface adapter
into corresponding CONE procedure cal ls, which are syn-
chronous.

The backplane handler controls the hardware that moves
messages between the host computer and the OSI Express
card. A special chip, cal led the HP Precision bus interface
chip, is used by the backplane handler to gain control of
the HP Precision bus and perform DMA between the OSI
Express card and the host memory space. Another special
chip, cal led the midplane memory control ler, is used by
the backplane handler to take care of OSI Express card
midplane bus arbitrat ion and card-resident memory. The
backplane handler conceals the interactions of these two
chips from CONE and the driver.

Diagnostics and Maintenance
The OSI Express card uses three ut i l i t ies to aid in fault

detection and isolat ion. The hardware diasnostics and

Backp lane
Interface Protocol

I HP Precis ion Bus

OSI Express Card Backplane Hardware

maintenance program uses the ROM-resident code on the

card to perform initial configuration of the MAC hardware.

After configuration, the program is used to access the ROM-

based test code that exercises both local and remote net-

working hardware. The same uti l i ty is also used to down-

load the OSI Express card software into RAM. The host-

based network and nodal management tool contains the

tracing (event recording) and logging (error report ing)

faci l i t ies. The network and nodal management tool can be

used to report network management events and stat ist ics

as well . However, i t is primari ly used to resolve protocol

networking problems causing abnormal appl icat ion be-

havior (e.g., receipt of nonconforming protocol header in-

formation). The software diagnostic program, which is the

third fault detection program on the OSI Express card, was

developed to aid in the identi f icat ion of defects encoun-
tered during the software development of the card. This
program uses the software diagnostic module on the card

to read and write data, set software breakpoints, and indi-

cate when breakpoints have been encountered. The inter-

face to the software diagnostic program provides access to

data structures and breakpoint locations through the use

of symbolic names. I t also searches CONE-defined data

structures with l i t t le user intervention.

Appl icat ion
Protocol and
User lnterface

A
i

@@

v

@
A

ffi
l

W
A

Operating
System

I

|EEE 802.4
ilodie Access Control {MAC) Hardware

IEEE 802,4 LAN

Other Local
Hosts

Fig. 1. HP OS/ Express card overview

FEBRUARY 1 990 HEWLETT PACKARD JOURNAL 7

OSI Model

OSI Express
Components

Fig.2. Comparison between the OS/ Express components
and the OSI Reference Model.

In a multivendor environment it is crucial that network-
ing problems be readily diagnosable. The OSI Express diag-
nostics provide ample data (headers and state information)
to resolve the problem at hand quickly.

An implementation of the OSI protocols is not inherently
doomed to poor performance. In fact, file transfer through-
put using the OSI Express card in some cases is similar to
that of existing networking products based on the TCP/IP
protocol stack. Performance is important to HP's customers,
and special attention to performance was an integral part
of the development of the OSI Express card. Special focus
on critical code paths for the OSI Express card resulted in
throughputs in excess of 600,000 bytes per second. Intelli
gent use of card memory and creative congestion control
allow the card to support up to 100 open connections.

Acknowledgments
Much credit needs to be given to our section manager

Doug Boliere and his staff-Todd Alleckson, Diana Bare,
Mary Ryan, Lloyd Serra, Randi Swisley, and Gary Wer-
muth-for putting this effort together and following it
through. Gratitude goes to the hardware engineers who
gave the networking software a home, as well as those who
developed the host software at Information Networks Divi-
sion and Colorado Networks Division.

Handler

the features of this architecture to provide the communica-
tion paths between CONE and the host-resident driver (see
Fig 1). The HP Precision I/O Architecture defines the types
of modules that can be connected to an HP Precision bus
(including processors, memory, and I/O). The OSI Express
card is classified as an I/O module.

The OSI Express card connects to an HP 9000 Series 800
system via the HP Precision bus (HP-PB), which is a 32-bit-
wide high-performance memory and I/O bus. The HP-PB
allows all modules connected to it to be either masters or
slaves in bus transactions. Bus transactions are initiated

The HP OSI Express Card Backplane

The backplane on the HP OSI Express cardis handled by
a pair of VLSi chps and asetof firmware routines. Ihese
components provide the interface between the HP OSI
Express card driver on the host machine and the common
OSI networking environment, or CONE, on the OS/ Express
card.

by Glenn F. Talbott

HE HP OSI EXPRESS CARD BACKPLANE handler
is a set of firmware routines that provide an interface
between the common OSI networking environment

(CONE) software and the host-resident driver. CONE pro-
vides network-specific operating system functions and
other facilities for the OSI Express card (see the article on
page 1B). The handler accomplishes its tasks by controlling
the hardware that moves messages between the host com-
puter and the OSI Express cahd. The backplane handler
design is compatible with the I/O architecture defined for
HP Precision Architecture svstems,l and it makes use of

8 HEWLETT-PACKARD JoURNAL FEBFUARY 1 990

Host Interface

The HP Precision I/O Architecture views an I/O module
as a continuously addressable portion of the overall HP
Precision Architecture address space. I/O modules are as-
signed starting addresses and sizes in this space at system
initialization time. The HP Precision I/O Architecture
further divides this I/O module address space (called soft
physical address space, or SPA) into uniform, independent
register sets consisting of t6 32-bit registers each.

The OSI Express backplane handler is designed to sup-
port up to 2048 of these register sets. (The HP-PB interface
chip maps HP-PB accesses to these register sets into the
Express card's resident memory.) With one exception, for
the backplane handler each register set is independent of
all the other register sets, and the register sets are organized
in inbound-outbound pairs to form full-duplex paths or
connections. The one register set that is the exception (RS
1) is used to notify the host system driver of asynchronous
events on the OSI Express card, and the driver is always
expected to keep a read transaction pending on this register
because it is set to receive notification of these events.

Register Sets
The registers are numbered zero through 15 within a

given register set. The registers within each set that are
used by the backplane handler as they are defined by the
HP Precision I/O Architecture are listed below. The regis-
ters not included in the list are used by the backplane
handler to maintain internal state information about the
register set.

Number Name

4 IO_DMA_LINK

Function

Pointer to DMA control
structure

Fig. 1. Ihe data flow relationships between the OS/ Express
card driver on the host computer and the maior hardware
and software components an the card,

by a master and responses are invoked from one or more
slaves. For a read transaction, data is transferred from the

slave to the master, and for a write transaction, data is
transferred from the master to the slave. Each module that
can act as a master in bus transactions is capable of being
a DMA controller. Bus transactions include reading or writ-
ing 4, 16, or 32 bytes and atomically reading and clearing
16 bytes for semaphore operations.

The OSI Express card uses a pair of custom VLSI chips
to perform DMA between its own resident memory and
the host memory. The first chip is the HP-PB interface chip,
which acts as the master in the appropriate HP Precision
bus transactions to perform DMA between the OSI Express
card and the host system memory space. The second chip
is the midplane memory controller, which controls the
DMA between the HP-PB interface chip and the OSI Ex-
press card resident memory. The memory controller chip
also performs midplane bus arbitration and functions as a
dynamic RAM memory controller and an interrupt control-
ler. See the box on page 15 for more information about the
HP-IB interface chip and the midplane memory controller
chip. The backplane handler hides all the programming
required for these chips from the host computer OSI Ex-
press driver and CONE.

5

6
7

t 2
1 3

IO-DMA-COMMAND CurrentDMAchain
commano

IO-DMA-ADDRESS DMAbufferaddress
IO DMA-COUNT DMAbuffersize(bytes)
IO-COMMAND Register set I/O command
IO STATUS Resister set status

The OSI Express card functions as a DMA controller and
uses DMA chaining to transfer data to and from the card.
DMA chaining consists of the DMA controller's
autonomously following chains of DMA commands written
in memory by the host processor. HP Precision I/O Ar-
chitecture defines DMA chaining methods and commands
for HP Precision Architecture systems. A DMA chain con-
sists of a linked list of DMA control structures known as
quads. Fig. 2 shows a portion of a DMA chain and the
names of the entries in each quad.
Data Quad. The data quad is used to maintain reference
to and information about the data that is being transferred.
The fields in the data quad have the following meaning
and use.

FEBRUARY ,I990 HEWLETT-PACTANO IOURruAT 9

Data Quad 1

Bits in the application-specific fields of CHATN_CMD con-
trol the generation of asynchronous events to CONE and
the acknowledgment of asynchronous event indications to
the host.
Link Quad. A link quad is created by the driver to indicate
the end of a DMA transaction fnote: not the end of a DMA
chainl. When a link quad is encountered in the chain, a
completion list is filled in and linked into a completion
list. If the CHAIN-LINK field does not contain an END-OF-
CHAIN, DMA transfers continue. The fields in the link quad
have the following meaning and use.

Meaningand Use

Pointer to the next quad in the chain, or
END-OF-CHAIN value
Causes a completion list entry to be
created and may specify whether the host
shouldbe interrupted

HEAD-ADDR Address of the completion list
ENTRY-ADDR Address of the completion list entry to

be used to report completion status

Completion List Entry. A completion list entry is used to
indicate the completion status of a DMA transaction. One
is filled in when a link quad is encountered in the DMA
chain. The fields in the completion list have the following
meanings and use:

Field

CHAIN_LINK
CHAIN_CMD

ADDRESS
COUNT

Field

CHAIN-LINK

CCMD_LINK

Field

NEXT-LINK

IO-STATUS

SAVE-LINK

Data Quad 2

Meaning and Use

Pointer to the next quad in the chain
DMA chaining command plus

application-specific fields
Memory address of the data buffer
Length of the data buffer in bytes

Meaningand Use

Pointer used to link the entry into the
completion list
Completion status field, a copy of the
IO_STATUS register
Pointerto the quad where an error
occurred, or to the link quad in the case
of no error

Fig.2. A portion of a DMA chain

Residue count of bytes remaining in the
buffer associated with the quad pointed
to by SAVE-LINK, or zero if no error

The completion list head contains a semaphore that al-
lows a completion list to be shared by multiple I/O modules,
and a pointer to the first entry in the completion list.

DMA Chaining
DMA chaining is started by the host system driver when

the address of the first quad in a DMA chain is written into
the IO-DMA_LINK register of a register set. To tell the OSI
Express card to start chaining, the driver writes the chain
command CMD-CHAIN into the register set's IO_COMMAND
register. This causes an interrupt and the Express card's
backplane handler is entered. From this point until a com-
pletion list entry is made, the DMA chain belongs to the
OSI Express card's register set, and DMA chaining is under
control of the backplane handler through the register set.
Fig. 3 shows the flow of activities for DMA chaining in the
driver and in the backplane handler.

Once control is transferred to the backplane handler, the
first thing the handler does is queue the register set for
service. When the register set reaches the head of the queue,
the backplane handler fetches the quad pointed to by IO_
DMA-LINK and copies the quad into the registers IO DMA_
LINK, IO_DMA_COMMAND, IO_DMA_ADDRESS, and IO_
DMA-COUNT. The backplane handler then interprets the
chain command in register IO_DMA_COMMAND, executes
the indicated DMA operation, and fetches and copies the
next quad pointed to by IO_DMA_LINK. This fetch, inter-
pret, and execute process is repeated until the value in
IO_DMA_LINK is END-OF-CHAIN. When END_OF-CHAIN is
reached, the backplane handler indicates that the register
set is ready for a new I/O command by posting the status
of the DMA transaction in the IO-STATUS register.

The DMA operation executed by the backplane handler
is determined by the chain command in the IO_DMA_COM-
MAND register. For quads associated with data buffers,
this chain command is CCMD-IN or CCMD-OUT for inbound
or outbound buffers, respectively. In this case the back-
plane handler transfers the number of bytes of data
specified in the IO_DMA_COUNT register to or from the
buffer at the host memory location in the IO_DMA_AD-
DRESS register. The IO_DMA_ADDRESS and IO_DMA_

10 Hewlerr-pncxnRD JoURNAL FEBRUARv 1990

lnbound or Outbound
Register Set

IO-COMMAND =
CCMD LINK

(Link Quad)

a

a

a

Wake Up
Express
Card

COUNT registers are incremented and decremented as the

data is transferred.
The link quads containing a CCMD-LINK chain command

cause the backplane handler to report the status of the
previous DMA transfers and continue chaining if the regis-

ter containing the CHATN-LINK field does not indicate END-

OF-CHAIN. The CCMD-LINK can also cause the backplane

handler to generate an interrupt to the host processor which

indicates to the driver that a completion list entry is ready

to be read.

Gompletion List Entry
When a link quad containing the CCMD-LINK chain com-

mand is encountered, a completion list entry is created.
Creating a completion list is a three-or-four-step process.
First, the backplane handler acquires the semaphore in the
completion list head at the address in HEAD-ADDR (see Fig.
4a). This is accomplished by repeatedly mastering (gaining
control of the bus) a read-and-clear bus transaction until a
nonzero value is returned. When a nonzero value has been
read, the OSI Express card owns the semaphore and can
proceed to the next step. The second step is to fill the four
fields of the completion list entry indicated by the pointer

+

'Complet ion List
Pointers

Return to Host

Fig.3. Flow of activities involved
in a DMA chaining operatton.

ENTRY-ADDB in the link quad. The third step is to write a
nonzero value into the semaphore field of the completion
list head, thus releasing the semaphore, and insert the new
completion list entry into the completion list (see Fig. ab).
These three steps are done automatically by the HP Pre-
cision bus interface chip on command from the backplane
handler.

The optional fourth step of the completion list insertion
process is to generate an interrupt to the host processor. If
the CCMD-LINK specifies, the address of the host processor
and the value lwitten in the processor's external interrupt
register are packed into the chain command word contain-
ing the CCMD-LINK. The backplane handler uses these values
to master a write to the host processor and cause an interrupt.

When the OSI Express driver has built a DMA chain and
started the OSI Express card traversing the chain, sub-
sequent DMA chains can be appended to the existing chain
without interrupting the card. To do this the driver simply
writes the address of the first quad in the new chain into
the CHAIN-LINK word of the last quad of the old chain. Since
the driver does not know whether an append is successful
(the card may have already fetched the Iast quad in the old
chain), there is a mechanism to verify the success of an

4

J

6

7

1 2

1 3

Link Ouad

-
trEtrlE

,l-l

o
t
6

I

o
G

I
Is
t0

Link Ouad

FEBRUABy 1990 HEWLETT-pAcxnno ..touRrunr 1 1

Fig. a. @) Completion list before executing a ccMD_LtNK
chain command. (b) Completion list after executing a CCMD
LINK chain command.

append. When the driver reads the completion list entry
for the old chain, a bit in the IO_STATUS word indicates
whether or not the OSI Express card found END-OF-OHAIN
in the last quad. If this bit is set (END-OF-CHAIN found) the
append is not successful and the driver must start the new
chain by writing the address of the first quad of the new
chain to the register set's IO DMA LINK register and a
CMD-CHAIN to the IO COMMAND register. Using the ap-
pend mechanism, the OSI Express card can run more effi-

12 riEwrerr-pncxARD JoURNAL FEBFUAFy 1990

ciently when the driver can stay ahead of the card in posting
DMA chains. This way the driver only starts one chain
(generating an interrupt on the Express card) on each regis-
ter set being used.

Procedure Call Interface

Data transfers between the host computer and the OSI
Express card are via DMA. DMA chains containing data
and control information are created by the host driver, and
the backplane handler uses the HP-PB register sets to trans-
fer the data to and from the OSI Express card. On the OSI
Express card the data is moved to and from the protocol
layers. Access to the protocol layers is provided by the
common OSI network environment, or CONE, and access
to CONE is through the backplane message interface (BMI).
Fig. 1 shows the main elements of this of this hierarchy,
except the protocol layers. The backplane message interface
is responsible for converting backplane message (asyn-
chronous) requests into corresponding CONE (synchro-
nous) procedure calls for outbound data transfers, and con-
verting CONE procedure calls into backplane message re-
quests for inbound data transfers. The reasons for this par-
ticular interface design are discussed in more detail on
page 27.

Handshake Procedures
The backplane handler interface to CONE uses a set of

procedures, which are written in C, to transfer messages
to and from CONE. CONE makes initialization and data
movement request calls to the backplane handler, and the
backplane handler makes completion and asynchronous
event procedure calls to CONE. The data movement re-
quests are made by CONE executing at a normal interrupt
level. The completion and event calls are made by the
backplane handler at the backplane handler interrupt level
(level three) to CONE. These completion and event proce-
dures set flags for processing later by CONE at a normal
interrupt level. The completion and event procedures are
located in the backplane message interface module. Point-
ers to these routines are passed to the backplane handler
at initialization time for each register set. Although these
procedures are located in the BMI, CONE is responsible
for initiation, interpretation, and action for messages to
and from the backplane handler, and the BMI is the inter-
process communication handler.
Initialization and Data Movement Procedures. These pro-
cedures, which are located in the backplane handler, are
used by CONE to send messages to the backplane handler.
I BH-assoc-rs0. This procedure is used by CONE to enable
an inbound and outbound register pair when a network
connection is establ ished. I t is also used to disable the
register pair when the connection is broken. The parame-
ters passed when this procedure is cal led include:

D The register set number.
n An identifier that is meaningful to CONE and is used

to identify subsequent asynchronous events.
tr The priority to be used in servicing the register set.
o Pointers to the three completion and event procedures

for this register set.
o A pointer to a block of memory to be used by the back-

Completion
List Head

(a)

Completion
(b) List Head

Completion
List Entry

DMA
Chain

Completion
List Entry

plane handler to queue asynchronous events.
n A pointer to a block of memory to be used by the back-

plane handler to copy event parameters from the host
computer.

n The length of the event parameter memory block.
I BH-puldataQ and BH-geLdatafl. These routines are used to

start a data transfer request-BH-puldata for inbound
transfers and BH-geldata for outbound transfers. They
are also instrumental in determining the state transitions
in the backplane handler's main interrupt service
routine. The parameters passed when these procedures
are called include:
n The register set number.
n An identifier that is returned with the BHl4uldata-

doneO or BH|-geldatLdone0 call to identify this par-
ticular request.

o A pointer to a block of memory to be used by the
backplane handler to queue this request. The block
of memory ensures that the queue depth of requests
held by the backplane handler is not limited by the re-
sources directly available to the backplane handler.

o A pointer to a structure of chained data buffers to be
sent or filled. This structure is matched to the struc-
tures created by the CONE memory manager.

o The total number of bytes requested for the transfer.
a A status value passed to the host computer in the com-

pletion list entry.
o A bit-field mode parameter that controls various as-

pects of the transfer, such as whether errors and
acknowledgments of previous asynchronous events
should be sent to the host computer.

Completion and Event Procedures. These procedures,
which are located in the backplane message interface mod-
ule, are used by the backplane handler to send messages
to CONE.
r BH|-cmd-arrival0. This procedure is used to announce

asynchronous events to CONE. There are two asynchron-
ous events that cause BH|-cmd-arrivalQ to be called by the
backplane handler. The first event is the posting of out-
bound data to a register set by the host driver. The first
quad in the DMA chain associated with the register set
has its transparent bit set and the quad's data buffer is
set to contain information about how much outbound
data is being sent. The transparent bit causes a call to
BH|-cmd-arrival0, passing the buffer attached to the first
quad. The second case in which BH|-cmd-arrivalQ is called
is the resetting of a register set by the driver. CONE must
acknowledge the receipt of a BH|-cmd-anivalQ call with a
BH-geldataQ call. The backplane handler's internal logic
prevents more than one BH|-cmd-arrivalQ per register set
from being outstanding at any time. The parameters
passed in a call to BHI- cmd-arrival include:
o The register set of the event.
o An identifier that is meaningful to CONE (established

with BH_assoc_rs0).
n A code indicating the type of event.
n The length of data in an event parameter block.

I BH|-puldata-done0 and BH|-geldata-done0. These proce-
dures are used to announce the completion and freeing
of resources from prior data movement requests. The
parameters passed with these procedures include:

o An identifier that is meaningful to CONE (established

by the BH-puLdataQ or BH-geldataQ request).
tr A count of the number of bytes moved to or lrom the

host computer.
u A status value passed from the host computer.
u An error value to indicate backplane handler errors.

Inbound and Outbound Requests
Fig. 5 illustrates how these routines are used to perform

the handshakes for data transfers between the backplane
handler and CONE. CONE starts off by calling BH-assoc-rs$
to enable an inbound and outbound register set pair when
a connection is established.
Outbound Requests. When BH|-cmd-anivalQ is called to in-
form CONE that the host computer has posted outbound
data to an outbound register set, CONE allocates the re-
quired buffer space and calls BH-geldatafl, specifying an
acknowledgment of the BH|-cmd-arrival$ call. When the data
has been transferred across the backplane, BH|-geLdata-
doneQ is called, triggering CONE to send the outbound data
across the network.
Inbound Requests. When CONE receives inbound data, it
calls BH-puldata0 to send the data across the backplane,
specifying that an asynchronous event must be sent to the
host and giving the size of the data. After the host computer
receives the asynchronous event, it posts reads to accept
the data. After the data has been transferred, the backplane
handler calls BH|-puLdata-done$, triggering CONE to release
the buffers used by the inbound data so they can be used
to receive more data.

The send and receive data sequences are repeated as
often as necessary to move data across the backplane. Note
that as long as CONE has free buffers available, CONE does
not have to wait for a preceding BH|-geldata-doneQ to allo-
cate the next outbound buffer and call BH-geldataQ. Also,
as long as free buffers are available, CONE can receive data
from the network and call BH-puLdataQ without waiting for
the preceding BH|-puldata-doneQ calls to indicate that the
host has taken previous data. When the connection is cut,

Outbound Data transters
BH-assoc-rs () (Enable Register Set)

lnbound Dala Transfers

BH-assoc-rs () (Enable Register Set)

Fig.5. Handshake sequences betuveen the backplane han-
dler and CONE (via the backplane message interface).

BH-assoc-rs () (Disable Register Set)

BH-assoc-rs () (Disable Register Set)

FEBRUARY 1990 HEWLETT-PACKARD JOUBNAL 13

No Register Set
Needs Service

Switch Context
to New Register Set

Start DMA

-End DMA

Fig. 6. fhe backplane handler state diagram.

CONE calls BH-assoc-rsQ to disable the register sets used
by the connection.

DMA Completion

(Processing Complete
on One DMA Buffer)

The Backplane Handler

The simplified state diagram shown in Fig. 6 shows the
behavior of the backplane handler to inputs from the OSI
Express card driver on the host computer and from CONE
through the backplane message interface.

In the BH-IDLE state the backplane handler is typically
not executing because the OSI Express card processor is
either executing in the CONE protocol stack, or the proces-
sor is in an idle loop itself. There are two ways to get out
of gHioLe. Either a new I/O command is written by the
host driver into a register set's IO COMMAND register caus-
ing an interrupt, or the backplane handler's main interrupt
service routine is called from CONE via BH-puLdatafl or
BH-geldata0 to process a new request. In either case at least
one register set will be queued for service, and the back-
plane handler will find the queued register set, switch con-
text to that register set, and enter the RS-BUSY state.

In the BS-BUSY state the backplane handler does all the
processing required to service one register set, moving the
register set through the various register set states. If a long
DMA transfer is started and the backplane handler must
exit to await DMA completion, the backplane handler will
enter the DMA-ACTIVE state. DMA-ACTIVE is a transitory state
that ends when the DMA completes and the backplane
handler returns to the BS-BUSY state. When one register
set can progress no further through the register set states,
the backplane handler switches to the next queued register
set. When there are no more register sets, the backplane
handler returns to the BH-IDLE state.

(continued on page 1 6)

Fig. 7. Flowchart for the back-
plane handlef s main interrupt ser-
vrce routtne.

14 newren-pecrARD JoURNAL FEBFUAHv lggo

Custom VLSI

The OSI Express card uses a pair of custom VLSI circuits to
perform DMA between the OSI Express card resident memory
and the host system's memory. The first chip is the Hewlett-Pack-
ard Precision bus interface chip and the other is the midplane
memory control ler chip. The bus interface chip masters the
appropriate HP Precision bus transaclions to perform DMA be-
tween the OSI Express card and the host system memory space.
The memory control ler chip is responsible for control l ing DMA
between the bus interface chip and the OSI Express card resident
memory, performing midplane bus arbitrat ion, and functioning
as a dynamic RAM memory conlrol ler and an interrupt control ler.

The bus interface chip functions as a bus master when doing
DMA on the HP Precision bus and as a bus slave when respond-
ing to direct l/O to and from the OSI Express card registers by
the host processor. The memory controller chip serves as a DMA
control ler when the bus interface chip is doing DMA, performing
DMA to or from card memory when the bus interface chip asserts
a DMA request (DMAR). The memory controller chip also serves
as a bus arbltrator when the bus interface chio responds to direct
l /O from the host computer, granting the bus interface chip the
bus when rt asserts a bus request (BUSRo).

Both chips are connected to a 68020 processor, dynamic RAM,
and address and data buses as shown in Fig, 1. Al l RAM address-
es on the address bus are translated by the memory control ler
chip into addresses that map into the physical RAM space.

DMA between the host system and the OSI Express card is a
complex process, considering that:
I Al l HP Precision bus DMA data transfers are either 16 or 32

bytes and must be size-al igned.
r DMA bus transfers on the OSI Express card bus are 16 bits,

and a one-byte shift is required if even-addressed OSI Express
card bytes are transferred to odd-addressed host bytes.

r DMA transfers on the HP Precision bus side can be specif ied
to start or end on arbitrary byte boundaries, with garbage data
used to pad to 16-byte al ignment and size.

I DMA transfers on the OSI Express card memory side can be
specified to start or end on arbitrary byte boundaries with no
extra data allowed.
The bus interface chip and the memory control ler chip combine

Address

chips for DMA

Frontplane
Fig. 1. OS/ express card data and address buses.

to make the task of doing DMA between OSI Express card mem-
ory and host memory almost as simple as programming address-
es and counts. Fig. 2 shows some of the basic elements on both
chips. The f igure is drawn showing DMA from the OSI Express
card to the host computer. To go the other way, reverse the
direction of the data flow arrows.

The bus interface chip uses a pair of 32-byte swing buffers so
that an HP-PB transaction can proceed in parallel with an OSI
Express card midplane transaction. The bus interface chip
PDMA ADDRESS register is a pointer into host memory. lt is
init ial ized to the size-al igned boundary below the desired start ing
address and is incremented by the size of the transactions (16
or 32 bytes).

The bus interface chip N COUNT and M COUNT registers

Fig. 2. Baslc elements of the HP
Precision Bus interface chip and
the midplane memory controller
chip.

Data

FEBRUARy 1990 HEWLETT-pAcrnRo .touRuL 15

count down as the DMA transfer progresses on the HP Precision
bus side (N_COUNT) and the OSI Express card midplane side
(M COUNT). N-COUNT is decremented by the HP Precision bus
transaction size (16 or 32 bytes) and M_COUNT is decremented
by the midplane transaction size (2 bytes). Both registers are
normally initialized to the desired size of the transfer. However,
if the transfer is from the host system to the OSI Express card
and the starting host address is not 16 (or32) byte aligned, the
amount of misal ignment is added to N COUNT to cause that
number of bytes to be read and discarded. The bus interface
chip will assert DMAR as long as both M COUNT and N COUNT
are greater than zero and the swing buffer on the OSI Express
card midplane side is not full (or not empty for host-to-OSl Ex-
oress card transfers).

The memory control ler chip has the task of al igning misal igned
host computer and OSI Express card data. lf data on the host
computer starts on an odd byte and the OSI Express card data
starts on an even byte, or vice versa, the data is passed through
the memory controller chip using the shift byte register to provide
the one-byte shift required for all data translers between the OSI
Express card memory and the bus interface chip. lf the startlng
addresses match (odd - odd or even - even) then DMA data is

transferred directly between the bus interface chip and the OSI
Express card memory without passing through the memory con-
troller chip. There is a two-clock-cycle penalty for each 16 bits
transferred when byte shifting DMA data.

The memory controller chip DMA_ADDRESS register, which
sources the OSI Express card memory address, is initialized to
ihe starting address oi the transier and is incremented by two
bytes as the data is transferred (one byte for first or last byte as
required by misal ignment and length). The COUNT register is
initialized to the number of bytes required and is decremented
as the DMA ADDRESS register is incremented. The PDMA
OFFSET register is a five-bit rollover counter that is used to pro-
vide addressing into the bus interface chip swing bufiers. PDMA_
OFFSET is masked to four bits when 16-byte HP Precision bus
transactions are being used so that it counts from 0 to 15 and
rolls to zero. PDMA_OFFSET is initialized to an offset value de-
pending on the size al ignment of the desired host start ing ad-
dress (zero for size-aligned transfers). The memory controller
chip will drive the DMA as long as the bus interface chip asserts
DMAR and the memory controller chip COUNT register is greater
than zero.

(continued trom page 14)

Main Interrupt Service Routine
The backplane handler's main interrupt service routine

is the component of the backplane handler that drives the
backplane handler state machine. A flowchart of the back-
plane handler main interrupt service routine is shown in
figure Fig. 7.

On entry to the main interrupt service routine, a three
way decision is made based on the reason for entry.
I If the entry is from a call by BH- puldata$ or BH-geldatafl

the routine searches for a queued register set to service.
r If the entry is from a new command written to a register

set, the register set is queued for service, and if the back-
plane handler state is DMA-ACTIVE, an exit is taken. Other-
wise the interrupt service routine searches for a queued
register set to service.

r If the entry is from a DMA completion, the backplane
handler ends DMA processing and enters a loop for pro-
cessing one register set. This loop consists of a test to
see if there is further action that can be taken on the
register set, register set processing (which drives the reg-
ister set state machine) if the test is successful, and a
test for DMA-ACTIVE. If the first test fails and there is
nothing further that can be done on the current register
set, that register set is removed from the queue of register
sets requesting service and the interrupt service routine
searches for a queued register set to service. If the second
test shows that DMA is active, an immediate exit is taken.
Note that there are no context switches to another register
set before a particular register set being serviced reaches
DMA completion. This is because on new command en-
tries, if the backplane handler state is DMA-ACTIVE an
exit is taken with no context switch. Also, BH- puldataQ
and BH-geldata0 will queue a register set for service but
not call the main interrupt service routine if the back-
plane handler state is DMA-ACTIVE.
All paths through the main interrupt service routine that

do not exit with DMA-ACTIVE eventually wind up searching
for another queued register set to service. Register sets are

16 nrwrerr-pncrARD JoUFNAL FEBRUARy 1990

queued for service in multiple priority queues. Each priority
queue is serviced in a first in, first out fashion before step-
ping to the next-lower-priority queue. (Register set priorities
are established at initialization.) When a register set is found
requesting service, a context switch is made to that register
set and the loop that processes register sets is entered. When
there are no more register sets requesting service the main
interrupt service routine exits.

Register Set State Machine
The backplane handler sends and receives multiple

streams of data on register sets and maintains those register
sets as independent state machines. Each register set is an
instance of a register set state machine. Register set state
changes are driven by the process register set block in the
main interrupt service routine. A simplified register set
state diagram is shown in Fig. B.

A register set leaves the RS-IDLE state either when a new
request is started (BH_puLdata0 or BH_geLdata0 queue a re-
quest and then queue the register set for service) or when
a host data buffer becomes available (host driver posts a
DMA chain, and a normal data quad is fetched). If a new
request is started, the register set transitions to the REQ-
PEND state. If a new host buffer becomes available the regis-
ter set transitions to the DATfuPEND state. The register set
may stay in either REQ-PEND or DATIPEND for a long time
waiting for driver action, resources to free up, or network
data to be received to cause the transitions to REQ-DATA-
PEND.

Once in the REQ-DATA-PEND state. DMA data will flow
through a register set until either the end of the host data
is encountered or the end of the local request data is en-
countered, or both. When one of these events is encoun-
tered, the register set will transition back to the appropriate
REQ_PEND, DATA_PEND, or RS_IDLE state.

The ability of a register set to go between either the REQ-
PEND or DATLPEND state and the REQ_DATA-PEND State re.
peatedly allows the OSI Express card to use the backplane

End of End of
Host Request

Host Data
Bufter
Available

Host Data

Available

Fig. 8. Reglster sef sfate diagram.

handler as a packet segmentation or reassembly point.
When networking buffer memory on the OSI Express card
is scarce and a large buffer of outbound data is posted by
the driver, CONE can allocate one small buffer to send the
data. The one buffer can be used over and over again by
going through multiple iterations of passing it to the back-
plane handler in a BH-geLdata$ call and then transmitting
it across the network. Each successive BH- geldata0 call
reads successive blocks of data from the host computer's
buffer. On the inbound side the process can be repeated
using BH-puldata$. The backplane handler is also flexible
enough to perform the same service for the host computer,
using large buffers on the card and multiple small buffers
on the host computer. The result is that because of the
backplane handler's ability to move data spanning buffer
boundaries on either the host computer or the OSI Express
card, the driver and CONE need not worry about accurately
matching buffers with each other.

Asynchronous Event Handling

For inbound and outbound data transfers the backplane
handler must process asynchronous events to notify CONE
and the host system of these data transfers. In the outbound
direction the CONE modules must be notified when the
host driver posts a buffer of outbound data so that CONE
can allocate outbound buffers to transport the data to the
network. CONE needs to be told how much data is out-
bound so that it can allocate resources before the data is
read onto the OSI Express card. The same problem exists
in the inbound direction. When a packet of data arrives at
the backplane handler from the network, the host driver
and networking code must be told of its arrival and size
so that host networking memory can be efficiently allo-
cated.

In the outbound direction, the driver prefixes each out-
bound message, which may be made up of multiple large
physical buffers linked with DMA chaining quads, with a
quad and a small buffer containing size and other informa-
tion about the outbound message. A bit is set in the prefix
quad indicating that it is a transparent command {transpar-
ent to the backplane handler), and the entire DMA chain

is posted on a register set.
When the transparent command quad is fetched by the

backplane handler, the small buffer associated with the
quad is copied into the event parameter buffer for that
register set. BH|-cmd-anival$ is then called and the transpar-
ent command and event parameters are passed on to CONE.
The backplane handler will then suspend fetching quads
on that register set until CONE has acknowledged the BHI-
cmd-anival0 event with a BH-geLdataQ call on that register
set. This prevents a subsequent transparent command from
overwriting the original command in the the event param-
eter buffer until CONE has acknowledged the first transpar-
ent command. CONE allocates the resources needed to send
part or all of the data across the network, and then calls
BH-geldataQ with the acknowledge bit set.

In the inbound direction, transparent indications provide
event notification to the driver and host networking soft-
ware. One register set (RS 1) is used as a high-priority
transparent indication register set. This register set is ser-
viced by the backplane handler at a priority higher than
any other register set, and the driver always keeps a DMA
chain of small buffers and completion list entries posted
on the transparent indication register set.

When the first packet of an inbound message arrives from
the network, the packet is placed in a line data buffer con-
sisting of one or more physical buffers. A physical buffer
containing the size and other information about the in-
bound message is prefixed to the line data buffer, and the
prefixed line data buffer is posted to the backplane handler
in a BH+uldataO call with the transparent indication bit
set. When the request generated by the BH+uldataQ call
anives at the head of the request queue on the register set,
the request is then requeued onto the transparent indication
register set. The data is then sent via DMA into one of the
small host computer buffers posted there to receive the
data, and then the backplane handler creates a completion
Iist entry.

When the driver reads the completion list entry as-
sociated with the transparent indication register set, the
transparent indication is passed on to host networking soft-
ware, which allocates the resources necessary to receive
the message. The driver then posts the allocated buffers on
the correct register set (as indicated in the transparent in-
dication) with an acknowledge bit set in the first quad's
CHAIN-CMD word. The backplane handler then sends the
data via DMA into the buffers on the host via the appro-
priate register set.

Conclusion
Four main benefits have resulted from the design of the

OSI Express card backplane handler. The first three are all
related in that they are derived from the flexibility of the
register set state machine. These benefits include:
I The producer and consumer processes on the host and

on the OSI Express card do not have to be time-syn-
chronized. Data transfers may be started either by the
host system or the OSI Express card register set being
used. The host system can post buffers to start the transfer
or CONE can start the transfer by calling procedures
BH-puldata0 or BH-geLdatao.

I Data buffers on the host system and the OSI Express card

FEBRUARY rggo HEWLETT-pAcKARD JouRNAI 17

do not need to match in size. Large buffers on the host
can be filled (or emptiedJ from multiple small buffers
on the card, and large buffers on the card can be filled
(or emptied) from multiple small buffers on the host.
Neither the host nor the CONE modules resident on the
I/O module need to know about the buffer sizes on the
other side of the backplane.

I The independence of buffer sizes has resulted in reduced
overhead for packet assembly and disassembly (a normal
operation for network software). The backplane handler
allows the OSI Express card to combine packet assembly
and disassembly with the data copy that is required to
cross the backplane. This allows the OSI Express card
networking software to accomplish packet assembly and
disassembly without the added overhead of a data copy.

r The problem of one connection or data path blocking
data flow on another path at the backplane interface is
eliminated. The primary reason for the backplane han-
dler's maintaining multiple independent register sets is to
prevent one path from blocking another. If one of these

paths becomes blocked because a consumer stops taking
data, the remaining paths continue to carry data without
the intervention of the networking application on the
OSI Express card or the host system.

Acknowledgments
Special thanks to Jim Haagen-Smit who made significant

contributions to the design and development of the back-
plane handler, and in reviewing this article. I would also
like to acknowledge the efforts of the HP Precision bus
interface chip design team, especially Vince Cavanna and
Calvin Olsen, and the midplane memory controller chip
design team, especially Mark Fidler and Alan Albrecht, for
providing these remarkable integrated circuits and review-
ing this article.

References
1. D.V. James, et al, "HP Precision Architecture: The Input/Output
System," Hewlett-Pockord /ournol, Vol. 37, no. 8, August 1986,
pp. 23-30.

and provide protocols that were portable to a maximum
number of machines. This environment is called CONE, or
common OSI networking environment.

CONE is a system design for a set of cooperating protocol
modules, a collection of functions that support these mod-
ules, and a comprehensive specification for module inter-
faces. A protocol module contains the code that imple-
ments the functions for a particular layer of the OSI stack.
As shown in Fig. 1, the overall OSI Express card network
system is structured as nested boxes. The more deeply
nested boxes contain more portable code. The network pro-
tocol code contains the data structures and functions that
implement the protocol layers. The execution environment
defines all the interfaces to the network protocol modules,
providing services that are tuned to support network pro-
tocols and ensure isolation from the embedding operating
system. The embedding operating system includes the
facilities provided by the operating system for the processor
on the OSI Express card. These facilities include a simple
interrupt system and a rudimentary memory manager. The
system interface is composed of small, partially portable

CONE: A Software Environment for
Network Protocols
The common OS/ network environment, or CONE, provides
a network-specific operating system for the HP OSlExpress
card and an environmentfor implementing OS/profocols.

by Steven M. Dean, David A. Kumpf, and H. Michael Wenzel

I MPLEMENTING HIGH-PERFORMANCE and reliable

I network protocols is an expensive and time-consuming
I endeavor. Supporting products containing these proto-

cols is also costly, considering changes in standards,
hardware, and application emphasis. Because of these chal-
lenges, in the early 1980s HP began to develop a framework
for providing portable protocol modules that could be used
in a number of products to minimize incompatibility prob-
lems and development and support costs. Early network
protocol portability concepts were used in networking
products for the HP s000 Series 500 computers,l the HP
9000 Series 300 computers, the HP Vectra personal comput-
er, and the HP code for connecting Digital Equipment Cor-
poration's VAXA/MS systems to HP AdvanceNet.2 Other
concepts in modularity and protocol flexibility were de-
veloped for products on HP 3000 computerss and HP 1000
computers.a In anticipation of new standards for ISO OSI
(Open Systems Interconnection) protocols, an HP interdivi-
sional task force was formed to define a networking envi-
ronment for protocols that would incorporate the best ideas
identified from current and previous network products,

18 HEWLEII-pAcKARD JoURNAL FEBRUABY 1990

modules that perform whatever actions are necessary to
adapt the embedding operating system for network use.
The services provided by the system interface include:
r Interfaces to intenupt service routines for card-to-host

computer DMA
r LAN frontplane hardware and timer functions
r Message channels from the card to the host for error

reporting
r Tracing and network management.

This article describes the CONE architecture and the fea-
tures it provides to support the OSI model.

OSI Addressing

Service Access Points and Connections
Two concepts that are central to the OSI model are service

access points (SAPs) and connections (see Fig' 2). These

concepts apply at every OSI layer and represent the re-

lationship between a protocol layer and a black box con-

taining all the protocol layers below it.
An SAP is an addressable point at which protocol ser-

vices are provided for a layer user. A layer user is the next-
higher protocol layer (e.g., the layer user of the network

layer is typically the transport layer). SAPs for higher-layer
users are identified by address or SAP selector information

carried by the protocol header. Protocol headers are dis-
cussed in the next section.

A connection represents an association between a pair

of users for the exchange of information. In the CCITT X.25

standard, which defines protocols that correspond to the
first three layers of the OSI model, connections are called
virtual circuits. Each connection represents a separate com-

munication path that is maintained by lower-layer pro-

tocols. If data stops moving on one connection (e.g., if an

application stops receiving data), data can still be ex-

changed over other connections, since they are indepen-
dent.

An analogy will serve to illustrate these concepts. A ser-
vice access point is like a multiline telephone-the kind
with the lighted buttons across the bottom, which is typi-
cally used by small businesses or departments. The tele-
phone (SAP) is the point at which service is offered by the
telephone company (lower-layer protocols). The telephone
has a telephone number (address or SAP selector) which

is used by the telephone company to identify it when plac-

ing calls (see Fig. 3). A connection is like an individual

'Functions and Data Slructures Provided by CONE.

Fig. 1. Layered architecture of the HP OS/ Express card
network system.

call from one telephone number to another. fust like the

lighted buttons on the telephone, several connections may

be alive simultaneously between two or more phone num-

bers. Each lighted button (connection endpoint identifier)

can be viewed as the end of an imaginary wire which is

used to represent that distinct instance of communication
with a remote user. The same pair of telephones may even

have more than one connection active between them at a

time, each with its own lighted button on each telephone.

The user can specify which connection wil l send or receive

data by pressing the related button (connection endpoint

identifier). If a remote user stops listening on a given con-

nection, the local user is st i l l free to talk on other connec-

t ions whose remote users are more responsive.

Protocol Headers
Most networking protocols send data from a local to a

remote layer user by adding protocol control information

to the front of the layer user's data buffer. This prepended

control information is called a protocol header. The con-

catenated result then becomes user data for the next-lower

layer of protocol (see Fig. 4). This works much the same

as envelopes within other envelopes, with the outermost

envelopes corresponding to lower layers of protocol. Each
protocol layer's header control information corresponds to

handling instructions on each envelope. When a packet is

received by a machine, each protocol layer examines and

removes its handling instruction envelope (header) and

delivers the contents to the next-higher protocol layer. One

crucial piece of header information identifies which mod-

ule is the next-higher layer. In the OSI model, this is called

the SAP selector. Datagram protocols carry the SAP selector

in each packet and treat each packet independently of all

others. Connection-oriented protocols only exchange the
(possibly large) SAP selectors during the connection estab-
Iishment handshakes. Successive packet headers carry only

a connection endpoint identifier, which is a dynamically

allocated shorthand reference that is mapped bythe receiv-

ing protocol to the specific connection between a pair of

Iayer users.

Addressing Relationships
Every user application finds a remote application via

some sort of application directory, which is analogous to

a telephone directory. To communicate with an application

on another machine, the directory maps the target applica-
tion's name into an NSAP (network service access point)

and an n-tuple vector of SAP selectors. The NSAP is the
intermachine address for the machine, and the n-tuple vec-

Local Machine Remote Machine A

L a y e r ' l I l ' I I I
I n t e r f a c e l l - l I

t - l

Connections or Virtual Circuits

" Connection Endpoint
() Service Access Point

Fig.2. Service access poinls (SAPs) and connections.

Remote Machine B

@
(r)

Embedding Operating Systern

FEBBUARv 1990 HEWLETT PAoKARD JoURNAL 19

tor contains an entry (intramachine address) for each OSI
layer used to communicate with the application on the
target machine. There are many schemes for assigning SAP
selector values to each of the entries in the n-tuple vector.
The ISO OSI standards offer little guidance as to which is
the best scheme. However, the important thing is that the
n-tuple vector combination be unique for application-to-
application communication over a network.

Fig. 5 shows the addressing relationships between the
top four layers of the protocol stack for one machine on a
network. The intermachine address, or NSAP, for all the
applications on this machine is X. The lines in Fig. 5 do
not represent connections but addressing relationships,
that is, they show which module is pointed atby an address
and what are valid address combinations. For application
A in Fig. 5, the n-tuple vector is P1, 51, T1 and for appli-
cation B the n-tuple vector is P22,57, T1. For these two
applications the protocol stack uses the presentation layer
SAP selector values P1 and P22 to tell these two applica-
tions apart. For application C, which has the n-tuple P44,
S9, T1, the presentation layer SAP selector P44 would be
redundant because no other application uses the subvector
S9, T1. For application D the n-tuple isP77 , S9, T2. Since
application C and D have the same SAP selector for the
session layer (S9), the SAP selectors are interpreted within
the context of the transport layer SAP selectors T1 and T2,
respectively.

Direct applications are applications that use the services
of lower OSI layers and bypass some of the upper-layer
protocols. To the rest of the OSI stack these applications
look like alternative modules to the upper OSI layers. For
example, applications E and F use the session layer directly.
To the lower-layer protocols they look like alternative pro-
tocol modules of the presentation layer. The address vec-
tors for applications E and F are S32, T2 and S9g, T2,
respectively. Applications G and H use the transport layer
directly and they are addressed by the vectors T40 and
T50, respectively.

Remote
Telephones-

7890 9876 4321 5432

Protocol Module Interfaces

In CONE, interfaces to protocol layers are procedure-
based, as opposed to being message-based as in many pre-
vious network products. Procedure-based means that pro-
tocol modules call one another instead of sending messages
to each other through the operating system. This minimizes
the number of instructions because a data packet can pass
through the protocol layers and be processed without being
queued. When necessary, protocol interface procedure
calls are converted to messages to cross a process bound-
ary-for instance, when crossing the OSI Express card back-
plane into the host operating system. Within the OSI Ex-
press card protocol stack, higher-level protocol layers call
lower-level protocols to process outbound packets, and
lower-level protocol layers call higher-level protocols to
process inbound packets. To avoid bugs that would be very
hard for a protocol designer to anticipate, reentrance is not
allowed, that is, a protocol module cannot call back into
the protocol module that called it. This means that packets
move in one direction at a time through the protocol stack
before all the procedures return to the outermost CONE
routine.

Protocol layer interrelationships and protocol module
interfaces in CONE are represented by three central data
structures: protocol entries, paths, and service access point
(SAP) entries.

Protocol Entries
For the OSI Express card there is a protocol entry data

structure for each protocol layer in the system. This in-
cludes protocols from physical layer 1 IEEE S02.3 or 802.4
LAN) to application layer 7 which contains the Association
Control Service Element (ACSE). Fig. 6 shows the config-
uration of these data structures after power-up. The pro-
tocol entry for each protocol layer contains a list of pointers
to all of its standard procedure entry points and other in-
formation, such as protocol identifiers, statistics, and trace
and log masks. Standard procedure entry points include
separate calls for actions like establishing and destroying
network connections, sending and receiving data, and spe-
cial control commands. This list of entry points is used to
bind modules dynamically in a way similar to the protocol
switch table in the University of California, Berkelev UNIXfffffrff

I J - - L I-r -r -r -r
I L_ . . _ t !L . - - - - f

i i f - - - - - J l c o n n e c t i o n s

SAP Selector

Connection Endpoint
ldentifiers

Fig.3, Telephone analogy illustrating SAPs and connections

20 tewlerr-pecKARD JoURNAL FEBRUARy 1990

J ,"ru,"" o"""""

I

Point (sAP)

Layer 5 User's Data

Total Line Data Packet Sent Serially over the Wire

Fig. 4. Nesfrng of protocol headers.

networking implementation. 5

Separate entry points exist for categorically different ac-

tions and for each direction of packet travel-for example,

the entry points SP-Send-DownQ for outbound packets and

SP-Send-Upfl for inbound packets, which appear in the ses-

sion layer shown in Fig. 6. These separate entry points

speed access to a protocol 's act ion-handling routines and

allow protocols to take advantage of implici t assumptions

about the state of a path, thus reducing extraneous state

checks and minimizing the number of instructions in the

most common data-handling cases. Al l protocols handle

the same parameter structure for each procedure cal l , al-

lowing protocols to be used interchangeably as bui lding

blocks in dif ferent combinations as necessary to reach a
given destination.

The SAP lookup tables are also set up for each protocol

layer right after power-up and all are empty except the

tables for the data l ink (layer 2) and internet protocol (layer

3) layers. The SAP lookup table contains the SAP selectors.
Part of the system configuration at power-up is to set up

the SAP lookup tables so that the data l ink protocol module
(layer 2) can f ind the network module (layer 3) and layer

3 can f ind the transport module (layer 4). The remote net-

UNIX s a reg stered trademark of AT&T In the U.S A and other counlr ies.

work SAP (NSAPI table is also empty because there is no

communication with remote nodes at the beginning. If a
remote node did try to connect right after power-up and

before any applications started to run, the internet protocol

layer would create a destination entry to remember who

is cal l ing and then i t would use i ts SAP entry to f ind the
transport layer to give it the packet. The transport layer

would send an error packet back to the remote node because

no transport SAP selector values would be active-the
transport layer would not know of any layer users above
it yet.

Path Data Structure
When an application begins to communicate with an

application on another machine, several data structures are

set up by CONE to handle the connection between the two

applications. One of these data structures is the path data
structure. The path data structure represents an individual

connection and serves as a focal point to t ie together the

col lect ion of al l support ing information required to talk to

a remote application. I t also represents the intramachine
route taken through the protocol layers by packets on a
given connection from the user to the LAN interface. It

consists of an ordered l ist of al l the protocols involved in

Layer 7

L^l l : l

Layer 6

Ful l -Stack OSI ApPl icat ions

Direct Direct
Session Transport

Appl icat ions Appl icat ions

Layer 5

Layer 4

Presentation

Session

Network
SAP Selector

Fig. 5. Addressing relationships
on one machtne in a network.

FEBRUARv 1990 HEWLETT pACKARD JoURNAL 21

Transport 4

SAP Selectors

the conversation, together with their connection state infor-
mation for this connection (see Fig. 7). As each protocol
module is called by CONE to process an event (@ in Fig.
7), it is passed a pointer to its entry in this list. This pointer
is represented by the PathEntry parameter shown in the in-
terface call tP-Send-Down shown in Fig. 7. The other param-
eter, buf, points to the parameter block that points to the
line data buffers containing the data packets. Parameter
blocks and line data buffers are discussed later when the
CONE memory manager is described. When each protocol
is finished with its part of the overall processing, the PathEn-
try pointer is used to find the next protocol module to be
called, either above or below the current one, depending
on whether the packet is being received or transmitted (see
the previous and next entries in the path data structure in
Fig. 7). Different stacks of protocols can be used for different
connections by changing the makeup of the path template.
Paths are used by both datagram and connection-oriented
protocols on a packet-by-packet basis.

SAP Entries
SAP entries are used by protocols to find each other

when a path is first being created. A SAP entry contains
the SAP selector value that represents the intramachine
address of the next-higher layer user. This relationship is
recorded in a standard data structure so that other subsys-
tems like tracing, logging, network management, and
dynamic debuggers can know which modules are involved
with a given path or packet. Each path entry points to the
SAP entry that represents the user on the local end of the
connection (@ in Fig. 7).

When an OSI application is first activated, it sets up the
n-tuple vector of SAP selectors stored in the SAP lookup
tables. Each cell in the n-tuple is handled by a separate
protocol layer. When CONE calls a protocol module that
serves a new user, it passes the user's SAP selector value,
user dependent parameters, and a pointer to the related
protocol global entry for the next-higher layer in the n-
tuple. The called protocol layer adds the new SAP selector
value to its SAP lookup table. The relationship of each new
SAP selector value to other values and the network topol-
ogy is protocol dependent because, besides the SAP selec-
tor value, information from the protocol header on an in-
coming packet is often used by the protocol layer as part
of the key value to find a given SAP entry. The responsibil-
ity of managing these key values belongs to the protocol
module. CONE supports the protocols in this function by
providing address management utility routines that per-
form common functions like creating and destroying SAP
entries and high-speed mapping of key values to SAP-entry
pointers for a given SAP entry.

Besides SAP entries. there is another structure called the
destination entry, which is used by the data link layer and
the network layer to contain network intermachine address-
es and other information about the remote node. In align-
ment with the functions defined in the OSI model, destina-
tion entries for the network layer represent the NSAP for
a remote machine beyond the LAN, and destination entries
for the data link layer represent machines that share the
same link (e.9., a LAN) with the local machine. The desti-
nation entry is a standard data structure for all the informa-

22 rewrErr-pncKARD JoURNAL FEBRUARY 1990

tion that needs to be remembered about a remote machine.
Besides the NSAP, examples of other information that
would be stored in a destination entry include route and
remote dependent protocol parameters (e.g., packet size,
options, version). This structure can be used to filter trace
and log data for each destination to avoid overloading out-
put files. Transient relationships can exist between the
network and data link layer destination entries to represent
routing information-for example, to forward a packet to
the network layer for destination A, use the data link layer
on destination B as the next stop. References to destination
entries are counted to ensure that they are held in existence
while they are pointed at by other structures.

Protocol Entry
Data Structures

SAP Lookup
Tables

(One per Protocol
Layer)

* One Per SAP Selector

Fag.6. Protocol entry data structures right after powerup.

Tying it Together
The protocol entry, path, and SAP entry data structures

together provide the framework that enables protocol mod-
ules to create and maintain network connections between
applications on different machines. When a user applica-
tion makes an outbound connection, it directly or indirectly
passes down all the related local and remote address infor-
mation needed to identify the remote machine and all the
modules on each end of the connection. CONE uses this
information when setting up the path data structure and
its relationship to local SAP entries. As the protocols send
packets to the remote node to set up the connection, the
address information is carried by the protocol headers. For
connections coming alive in the inbound direction, the
address information in the protocol headers is used by each
protocol module to find a SAP entry that contains the in-
formation needed to initialize its entry in a fresh path data
structure. Inbound paths are initialized upward, one pro-
tocol layer at a time. When the incoming connection
reaches the user application, the path data structure is a
mirror image of the one built for the outbound path on the
initiating machine. At any time during the life of the path,
CONE can be requested to extract all the address (and pro-
tocol parameter) information from a path. This information
can be used by a user application to call a remote user
back, or during an error log for precise identification of all

Protocol Entry
Data Structures

+Remote NSAP Table

the modules on each end of a connection having a problem.
Surrounding these common data structures is an exten-

sive list of rules related to how these structures are used
and what can and cannot happen as a result of a protocol
interface event procedure call, These rules specify:
I What services a protocol at a given layer can rely on

from the protocol layer below it without binding itself
to a specific lower protocol. This is needed for support-
ing protocol replaceability (e.9., OSI internet protocol
can work with IEEE 802.3, IEEE 802.4,X.25, LAPB, test
modules, etc.).

I How protocol facilities are enabled and disabled, and
how protocol-specific information is passed to a module
in the middle of the protocol stack without the modules
around it having to know what is happening. This is
needed for protocol module independence and also for
protocol replaceability.

r How paths are used when connections at various levels
have different lifetimes, or when multiple connections
multiplex onto each other.

r Which modules have the right to read or write each of
the fields in the common data structures.

r At what times the data structure fields are known to be
valid or assumed to be invalid.

r How data sent or received on the network wire fline
data) flows from layer to layer.

Path Data Structure
(One per Connection

or Datagram Path)

- Destination Entry
(One per Remote Node)

lnterface Call.iitfo4rffi@ Fig. 7. Relation between path and
p rotocol entry d ata structu re s whe n
appl ications on d itfe re nt m ach i nes
are communicating over a network.

FEBRUARv 1990 HEWLETT-pACKABD JoURNAL 23

SAP Lookup
Tables

r How buffer space is managed for multiple protocol layers
and what layer has the right to touch a line data buffer
(buffer containing data packets) at any given time.

I How a line data buffer is to be segmented and reassem-
bled at a given layer when multiple layers have this
ability.

I How flow is controlled on a system-wide basis. For exam-
ple, when there are multiple connection-oriented pro-
tocols, buffers do not need to be reserved by each layer
to handle its own flow control, retransmission, and queu-
ing requirements. AII layers know collectively what will
happen to data buffer memory entering or exiting the
system.

I How to handle arbitrarily complicated OSI protocol in-
terface events with a minimum number of simple, stan-
dard buffer structures and interface calls.

I How to handle error situations, especially under race
conditions where things are going wrong on both ends
of the path at the same time.

Process Model

One of the major goals of CONE is to provide an architec-
ture where protocol modules can be easily ported to differ-
ent environments. To provide a portable architecture, it is
essential that a well-defined process structure be ported as
well. This allows the protocol modules to be designed with
a specific process structure in mind.

The underlying process model for the CONE protocol
code is procedure-oriented. The CONE process model dif-
fers from a typical time-sliced dispatching algorithm in
that once a task is dispatched, i t is run to completion.
CONE performs a sort of "pseudo-multitasking" in that the
system depends on the timely completion of a task rather
than incurring the overhead of process preemption and
context-switching. A task can be thought of as an event
handler. When a CONE task is invoked, the dispatcher
makes a procedure call to the related event handler proce-
dure. The event handler is then free to do whatever it likes
but must eventually return to the dispatcher. When there
is no work to be done, the card is idle waiting for an external
event to occur. When an external event occurs, the handler
for the event is scheduled.

A scheduled event handler is represented by a small data
structure called a token. The protocol module provides the
space for the token as part of its path data structure. The
token contains, among other things, the entry point of the
event handler. When an event handler is scheduled, the
token is added to the end of a global FIFO task queue. The
dispatcher simply cal ls the event handling routine when
the routine's token reaches the front of the queue. Because
of the potential overhead, task priorities are avoided as
much as possible.

Al l CONE-based event handlers are considered to be
tested, trusted system-quali ty code. With this type of pro-
cess model, the protocol modules must abide by two rules.
First, the protocol module must complete execution as
quickly as possible. Waiting in a loop for an external event
is not al lowed because i t would delay other tasks from
running and degrade performance. Second, a protocol mod-
ule is not al lowed to reenter the protocol module that cal led

24 lrwrErr-plcrARD JoURNAL FEBRUARY 1990

it. Disallowing a protocol module from being reentered
avoids the possibility of infinite loops, and makes coding
of the protocol modules much simpler because only one
protocol module at a time can be changing the common
data structures. Reentrance in a procedure-based system is
a fertile bug source. For a small cost in performance, reen-
trance can be avoided by simply scheduling a task to call
the other layers back only after they have exited back to
the dispatcher.

An example of the CONE dispatcher behavior is illus-
trated in Fig. B. In this example a packet is received that
requires a TP4 AK (transport 4 acknowledgment) packet
to be sent back out on the LAN. When a packet for the OSI
stack is received from the LAN, a frontplane interrupt is
generated. The frontplane interrupt service routine will
service the hardware, queue the packet, schedule the in-
bound task of the data link protocol module (LLC : logical
link control), and exit. At @ in Fig. B, the CONE dispatcher
calls the LLC inbound task scheduled by the frontplane
interrupt service routine. LLC processes the packet and
calls the network layer's protocol module (IP), which pro-
cesses the packet and calls the transport protocol module
(TP4). Since TP4 was entered via its inbound packet inter-
face call, it is not allowed at this time to call an outbound
interface routine to send an AK. Therefore, it must schedule
an AK task @ to send the AK packet out after the inbound
routines are done. After processing of the inbound packet,
TP4 returns to IP @, which returns to LLC, which returns
to the CONE dispatcher. The CONE dispatcher then moves
on to the next pending event, namely the AK task, and
wakes up TP4 to handle the event @. Since TP4 was entered
directly from the dispatcher, it is now free to send outbound
(or inbound) packets, since no other protocol modules are
in danger of being reentered. At €), TP4 calls IP to send
the AK, which calls LLC to put the packet on the LAN.

Schedule Acknowledgment Task

@ Call AcknowledEment Task

O Acknowledgment Packet

LLc lnbound rask Queued to

Receivespacket FrontplaneHardware

via Frontplane
Interrupt Service
Rouline

Fig.8. Example of the behavtor of the CONE dispatcher.

Memory Management

CONE provides two types of memory: memory objects

and line data buffers. A memory object is a contiguous

block of memory (heap space). The intended use of a mem-

ory object is to hold a data structure for direct use by a

CONE-based module. Memory objects can be shared by

multiple modules but there is always a single, well-defined

owner which changes very little over the lifetime of the

obiect.
Line data buffers hold data that is sent and received on

the network wire or l ine. Unlike memory objects, l ine data

buffers are passed, created, and destroyed outside the

CONE environment. To ensure portability, all CONE-based
modules al locate, deal locate, write, read, and manipulate

line data buffers through macro calls to the CONE buffer

manager. Since protocol modules aren't coupled to specif ic

buffer structures, only the buffer manager needs to be

changed to use a different underlying structure for efficient

interaction within another operating system. Line data buf-

fers are not guaranteed to be contiguous and may consist

internally of several smaller memory oblects chained to-

gether.
CONE's use of memory is optimized for speed in al locat-

ing and deallocating memory objects and line data buffers.

At the same time, it is designed to make maximum use of

available memory by taking advantage of the predeter-

mined characteristics of protocol memory use. This can be

contrasted with the memory managers in many conven-

tional operating systems which are not optimized for speed

of allocation and deallocation, since most regular processes

allocate arbitrary-size memory objects and keep them until

the process dies. The CONE buffer manager also plays a

maior role in card flow control, ensuring that all users can

continue to run in worst-case memory situations. Refer to

the art icle on page 36 for a detai led discussion on OSI
Express card flow control.

Memory Object Allocation
A fundamental element of any memory management sys-

tem is the ability to allocate and deallocate contiguous

blocks of memory dynamically. Although a basic function,

the method chosen can have a significant effect on perfor-

mance. We studied the first-fit, best-fit, and buddy system

memory allocation algorithms and these methods proved

to be slower and more complicated than we needed. Net-

working applications typically make repeated requests for

memory objects that fall into a small number of fixed sizes.

Since the number of different memory obiect sizes is small,
a two-level scheme is used in which memory is first divided

into one of two block sizes, and then small blocks are

subdivided to fill memory object pools. Having only two

block sizes greatly reduces the time necessary to allocate

and deallocate a memory block. A memory block is allo-

cated by removing the block at the head of a free list. A

memory block is deallocated by inserting the block at the

head of the free list. Large block sizes are only used to
grant large line data buffer requests, while the small block

sizes are used for both small line data and memory objects.

Dividing the entire memory into fixed-size blocks elimi-

nates external fragmentation because there are no wasted

chunks of memory between blocks. However, internal frag-

mentation can still be a problem since the memory block

may be larger than needed. To reduce internal fragmenta-

tion a pool manager was developed. The pool manager

takes the smaller-size blocks described above and divides

them into even smaller blocks of various fixed sizes so that

they fit the groups of memory objects used by CONE-based

modules. There are several pools, each managing a different

object size. By studying the distribution of memory object

sizes that are allocated, we determined that four different

pool object size groups were needed. With the four pool

obiect size groups and the two original block sizes, wasted

space resulting from internal fragmentation was reduced

to approximately 10 to 15 percent. CONE-based modules

are unaware of whether a memory object comes from a

pool or direct ly from the free l ist, since this detai l is hidden

behind the CONE interface.
The pool manager is designed to allocate and deallocate

memory oblects very quickly. The speed of the pool man-

ager, combined with the simplicity of the memory free list,

reduces the time required to allocate and deallocate mem-

ory to a very small portion of the overall processing time.

Line Data Buffer Structure
The structure of a line data buffer is a key part of the

CONE design. For portability, the internal structure of line

data buffers is hidden from CONE-based modules. Line

data buffers are passed from module to module as protocol

interface events propagate through the stack. To the layer

users, a line data buffer is represented by a pointer to a

standard data structure in a memory object called a param-

eter block which invisibly references the memory area that

actually stores line data (see Fig. 9). The parameter block
functions like a baton that is passed from module to mod-
ule. The layer currently holding the parameter block is the

one that has the right to work with the buffer. The parameter

block has a fixed part that carries the standard parameters

every protocol module must recognize, such as the current
amount of line data contained in the buffer, whether the

buffer contains a packet fragment or the end of a fragment
train, and what protocol interface event the packet is related

to. The rest of the parameter block can be used for storing
protocol dependent parameters related to the interface
event. This structure allows the protocol interface proce-

dure calls to have a very small number of parameters,

speeding up procedure calls from layer to layer. It also
provides the space for queuing event-related inlormation

in the suboptimal case where the event can't immediately

be acted upon and propagated through the stack.
Data copying is kept to a minimum in the buffer manager

design, both to maximize performance and to minimize

Line Data
Buffer Pointel

lnv is ib le
Reference "'1...,Segment Control Structures

r
Line Data Segments

Fig. 9. fhe components of a line data buffer

FEBRUARy 1 990 HEWLETT-pAcKARD JoURNAL 25

memory use. This led to a special feature in the parameter
block design. Many connection-oriented protocols, such as
OSI transport, need to keep a copy of each transmitted
packet until an acknowledgment of delivery is received
from the remote machine in case the packet needs to be
retransmitted. Rather than allocate another buffer and copy
the data, the parameter block is simply marked with a
pointer to the protocol module's entry point so that the
buffer can be given back when the lower protocol layers
have finished with it. When this entry point is called, the
protocol module queues the original packet, rather than a
copy. The retransmission timer is also started during this
buffer return call made by the lower layers after the previ-
ous transmission has left the machine. This avoids the
embarassing problem of having multiple retransmitted
copies of the same packet piling up in the lower layers.

Line Data Buffer Manager
The design of the primitives for the line data buffer man-

ager was driven by what the module designers needed to
implement the protocol layers' functionality. Primitives
exist for allocating and deallocating buffers, reading or writ-
ing data in a line data buffer, adding or removing header
data in a line data buffer, disabling or enabling line data
flow inbound or outbound for a path, pacing of line data
buffer use for each path, and a variety of other functions.
Line data buffers are allocated asynchronously. If a module
requests a line data buffer and one is not available, the
buffer manager will schedule an event and inform the mod-
ule when the buffer is available.

There are many line data buffer management functions.
However, the two most important functions are responsible
for fragmenting a packet for transmission and reassembling
a packet when it is received.
Fragmenting a Data Packet. When a protocol module, such
as the module for the transport layer, receives an outbound
packet that is larger than it can legally send, the packet
must be fragmented and sent as several smaller data pack-
ets. When the transport layer fragments a packet it must
attach a header to each fragment. The buffer manager pro-
vides a primitive that allows the protocol module to attach
its header, which is in a separate buffer, at any point in
the data packet without having to copy data from the orig-
inal buffer. By changing fields in the segment control struc-
tures (see Fig. 10) within the line data buffer, the header
can be attached without copying data by making the new
fragment buffer point into the relevant data portion of the
unfragmented buffer. This method significantly improves
performance because it avoids data copying.
Reassembling a Data Packet: Some protocol modules, such
as the network layer, need to reassemble a fragmented in-
bound packet before delivering it to the layer above. The
buffer manager provides a primitive for reassembling a data
packet. This routine will handle out-of-order, duplicate,
and overlapping fragments. Again, links in internal buffer
segment control structures can be manipulated to avoid
recopying the data in the buffers being coalesced.

Allocation versus Preallocation
Establishing a connection requires both types of memory,

memory objects for connection-specific data structures and

26 rEwlErr,pecKARD JoUFNAL FEBRUARy 1990

line data buffers to send and receive packets. The buffer
manager design evolved from a method in which line data
buffers were preallocated for each connection based on
where they were most needed. When a connection was
established, enough line data buffers were preallocated to
ensure that the connection could always make progress.
Any line data buffers that were not preallocated could be
shared by all other connections to increase performance.
The idea was to ensure that each connection had enough
buffers to make progress in worst-case memory situations,
but allow connection performance to increase when extra,
uncommitted line data buffers were available.

Since the OSI Express card has a limited number of buf-
fers, it became apparent that preallocating line data buffers
restricted the total number of connections that the card
could support. We wanted to support a greater number of
connections. Good performance can be achieved as long
as too many of the open connections do not try to send or
receive data at the same time. The phone company is again
a good analogy. Everyone has a phone and performance is
generally good, even though there isn't enough switching
equipment for everyone to make a call at the same time.

The algorithm used is to have all connections share a
pool of line data memory, rather than preallocate buffers
when a connection is established. When a moderate
number of connections are active, performance is good. As
more connections become active at the same time. connec-
tion performance degrades since the aggregate system per-
formance is divided among the active connections. This
proved to be a good compromise. Good performance was
achieved while allowing a large number of connections.

Timer Management

Networking stacks use a large number of timer rvakeups.
Each connection needs one or more problem timers to de-
tect when an expected event is overdue and recovery action
is necessary. Other timers are used to generate protocol
messages to check back with the remote machine before
its problem timers wake up, and to avoid long delays when
the remote machine can't send because of the flow control
rules of OSI transport. Unlike timers for most other appli-
cations, network timers rarely expire in normal operation,
since the expected event usually occurs. Instead, they are

Segment Control Structures

Line Data Segments

Fig. 10. Ihls shows what the buffer shown in Fig.9 looks like
after fragmentation. The original buffer is still intact and the
new buffer points into it.

canceled or restarted. A resolution of 100 to 200 ms is lust
fine since the timers are for exceptional events anyway.

Traditional timer manager implementations have kept

the timers in a linked list. This makes it very easy to deal

with the expiration of a timer because it is simply removed

from the front of the list. However, restarting a timer is

slow because the list has to be scanned to locate the proper

place to insert it. In the case of the OSI Express card this

proved to be too slow. During normal data transfer there

are four timers for every connection, at least two of which

have to be restarted every time a data packet is sent or

received. A quick analysis showed that with just 50 connec-

tions, timer insertion could take as long as all other protocol

stack processing combined, causing the timer manager to

become a performance bottleneck.
What we needed was a way to restart timers quickly.

The solution is to keep timers in two unordered lists called

the short-term bin and the long-term bin. Timer wakeups

are represented by the same tokens that were described

earlier for event handlers, with the addition of a "time left

until expiration" field. When a timer is restarted it is simply

inserted at the head of the appropriate bin. No scanning

has to be done every time a packet arrives. Periodically, a

monitor task runs that scans the entire short-term bin look-

ing for timers that have expired since the last time it ran.

Those timers are removed from the bin and passed to the
scheduler to be put on the task queue. Every ten times the

timer monitor task runs, it also scans the long-term bin
looking for timers that are getting close to expiring and

need to be moved down into the short-term bin.

The central idea of this algorithm is to spread the timer
list scanning overhead among many packets. To be success-
ful the timer monitor task has to run at some large multiple

of the packet arrival rate. If a packet arrives every 5 ms,

the timer monitor task can't run every 10 ms or there would

be little savings. We found that a period of too ms is a
good compromise between precision and performance.

System Interface

The system interface is a collection of functions that
provides the OSI Express card with an interface to the
embedding operating system on the card and communica-

tion with the host system housing the OSI Express card.
These functions include interrupt service routines and
message channels for the card-to-host error reporting, trac-
ing, and network management.

Interrupt System
There are eight available interrupt levels on the OSI Ex-

press card. Level zero has the lowest priority and level
seven the highest priority. The first three levels are soft
interrupts in that they are generated by a processor write
to a special hardware register. The rest of the interrupt
levels are devoted to interrupt handlers for the various card
hardware components. They include a timer hardware in-
terrupt, DMA hardware interrupt, LAN frontplane
hardware interrupt, host backplane interrupt, powerfail in-
terrupt, and memory parity and bus error interrupts.

The OSI Express card contains two types of code: the

full OSI protocol stack and the card monitor/debugger. The

full OSI stack runs at interrupt level zero, which is the
card's background level, and the card monitor/debugger
runs at interrupt level two. Interrupt level one is reserved
for applications that may need to preempt the normal OSI
protocol activities. The OSI stack is the largest and most
active level since it contains all the protocol modules com-
monly used for general-purpose networking applications.
The card debugger runs at a higher interrupt level than the
OSI protocol stack and level one applications so that it can
preempt all protocol activity, allowing card diagnosis when
either the OSI protocol stack or other applications are stuck
in loops.

There are two CONE dispatcher task queues, one for
the full OSI stack and one for the card monitor/debugger.
Each task queue represents a separate independent instance
of the simple CONE process model. When a task queue
becomes empty the CONE dispatcher will return to the
module that called it. In the full-stack OSI case. the dis-
patcher will return to the card background process, which
is simply an infinite loop that calls the CONE dispatcher.
Since the card monitor/debugger runs at interrupt level
two, the CONE dispatcher is called from the level two
interrupt service routine.

Backplane Message Interface
The OSI Express card's backplane interface is message-

based, in that an interface event (transfer of data inbound
or outbound) is represented as a message with all the event
parameters and line data serially encoded into a string of
bytes. The string is sent via DMA between the host com-
puter RAM and the OSI Express card.

Since the CONE protocol module interfaces are proce-
dure-based, a module called the backplane message inter-
face, or BMI, is used to translate CONE events finbound
packets) into messages that are sent to the host operating
system and eventually to user applications. For outbound
packets the backplane message interface converts mes-
saged-based requests into CONE procedure calls. Because
of the way the backplane message interface and the CONE
protocol module interface are designed, any protocol mod-
ule can be accessed across the backplane without the pro-
tocol module's knowing whether the entity above its inter-
face is adjacent to it inside CONE.

The following factors affected the design of the OSI Ex-
press card's message-based backplane:
I High-performance LAN interface chips require rapid,

high-bandwidth access to buffer memory when data is
being sent or received on the line. Line signaling is syn-
chronous, meaning that once started, data flows continu-
ously, one bit after another with no wait signals. For
these reasons, the buffers accessed by the LAN chips are
Iocated in RAM on the OSI Express card, rather than in
the host computer.

I A specific word of host RAM cannot be rapidly read or
written by the OSI Express card's processor, nor can card
RAM be rapidly read or written by the host processor.
Instead, so that many cards can share access to host
RAM, the backplane is optimized for very high-speed
DMA bursts. This minimizes the amount of bus
bandwidth lost during bus access arbitration fsee arti-
cle on page B for more about DMA and the OSI Express

FEBRUARy 1 990 HEWLETT pAcKARD .lounrunr 27

card).
I The OSI Express card's processor operates as an asyn-

chronous, independent front end to the host processor.
Very little card-related processing occurs inside the host
operating system, but rather in user-space processes be-
longing to OSI applications. Since the user-space appli-
cations can be busy, timesharing the host with other
applications, swapped out to disk, and so on, the cou-
pling between the protocols on the card and the host
system is very loose.

r The backplane hardware supports a large number of in-
dependent DMA channels. Each CONE path that is tied
to a user application is allocated an inbound and an
outbound DMA channel at path-creation time. There are
also fixed DMA channels for trace messages (inbound),
log messages (inbound), nodal management messages
(inbound and outbound), debug/monitor messages (in-
bound and outboundJ, expedited data which bypasses
normal flow control on each path (inbound and out-
bound), and backplane messages which set up and tear
down paths and manage dynamic DMA channel assign-
ment (inbound and outbound).

Conclusion
CONE provides a system design for supporting system-

wide and module-internal optimization. Flexibility in the
overall framework supports interchangeability of indi-
vidual protocol modules and protocols from multiple pro-
tocol families, as well as portability of CONE-based code
to almost any system. Having a coordinated overall
framework also makes the system much more instrument-
able and supportable. Finally, because of this system-wide
orientation, the overall system performance and the

number of connections supported for a given amount of
RAM are much higher than they would otherwise be.

Acknowledgments
The members of the interdivisional task force that de-

fined CONE include: Sanjay Chikarmane, Allwyn Sequeira,
Collin Park, and Dean Thompson. Other contributors who
provided additional details and site representation in other
areas include Gerry Claflin, Steve Dean, Doug Gregory, and
Lori Jacobson. CONE system designers include some of
those already mentioned, as well as Bill Gilbert and Dave
Woods. As mentioned earlier, CONE was built with the
best ideas taken from previous products. CONE represents
the work of many people, but the work of one person par-
ticularly stands out, Carl Dierschow, who originated the
leaf node architecture which greatly influenced the CONE
design.

References
1. l.l, Balza, H.M. Wenzel, and I.L. Willits, "A Local Area Network
for the HP 9000 Series 500 Computers," Hewlett-Pockord /ournol,
Vol . 35, no. 3, March 7s84, pp. 22-27.
2. C. Dierschow, "Leaf Node Architecture," Hewlett-Pockord /our-
nol , VoI . 37, no. 10, October 1986, pp. 31-32.
3. K.J. Faulkner, C.W. Knouse, and B.K. Lynn, "Network Services
and Transport for the HP 3000 Computer," Hewlett-Pockord /our-
nol , Vol . 37, no. 10, October 1986, pp. 11-18.
4. D.M. Tribby, "Network Services for HP Real-Time Computers,"
Hewlett-Packard /ournol, Vol. 37, no. 10, October 1986,pp.22-27.
5. S.J. Leffler, W.N. loy, R.S. Fabry, and M.l. Karels, Networking
Implementotion Notes, 4.3 Edition, Computer Systems Research
Group, Department of Electrical Engineering and Computer Sci-
ence, University of California, Berkeley, Revised fune 5, 1986.

The Upper Layers of the HP OSI Express
Card Stack
The upper three layers of the HP OSI Express card share
the same architecture and use fables to simplify their
implementations of the OS/ stack. The application and
presentation layers are implemented in the same module.

by Kimball K. Banker and Michael A. Ellis

HE TOP THREE LAYERS of the OSI Reference Model
consist of the session layer, the presentation layer,
and the application layer. The purpose of the session

layer is to provide organized and synchronized exchange
of data between two cooperating session users-that is, two
presentation layers in different applications. The session

28 rewrrrr-pacrARD JoURNAL FEBRUARy 1990

layer depends on the services of the transport layer to pro-
vide the end-to-end system communication channels for
data transfer. The presentation layer's job is to negotiate a
common transfer syntax (representation of data values) that
is used by applications when transferring various data
structures back and forth. The application layer is the high-

est layer of the OSI Reference Model and does not provide

services to any other layer. This layer uses the common
protocol called Association Control Service Element, or

ACSE, to establish and terminate associations between ap-
plications and to negotiate things that are common to appli-
cations.

Session Layer

The OSI Express card's implementation of the session
layer provides services to the presentation layer that enable
i t to :
I Establish a virtual connection with a peer session user

to exchange data in a synchronized manner and release
the connection in an organized manner

I Negotiate for the use of tokens to exchange data and
arrange for data exchange to be half-duplex or full-duplex

r Establish synchronization points within the session con-
nection dialogue so that in the event of errors, dialogue
can be resumed from the agreed synchronization point

r Interrupt a dialogue and resume it later from a prear-

ranged point.

Session Architecture
The OSI session protocol is now an international stan-

dard which is specified in ISO documents 8326 and 8327.
However, defect reports and enhancements continue to be
made to the base standard. These changes will continue to
occur long after the first release of the first OSI Express
product. Therefore, one of the key design considerations
for our implementation of the session protocol was to pro-
vide for easy maintenance of the software. Another design
goal was to isolate the protocol softrvare from machine and
system dependencies, thus allowing the protocol software
to be portable from machine to machine with little or no

changes. The common OSI networking environment
(CONE) architecture enabled us to achieve our portability
goal.

The session software is designed to separate those func-
tions that pertain specifically to the OSI protocol and those
that are called local matters. Local matters are primarily

tasks that are not included in a protocol specification be-
cause they depend on specific system capabilities, such as
user interfaces and memory management. As shown in Fig.
1, the OSI Express implementation divides session func-
tions into two main modules, the session CONE manager
and the SPM (session protocol machine).

The session CONE manger is primarily responsible for
servicing local matters and providing a clean interface be-
tween CONE and the SPM. Some of the maior functions of
the session CONE manager include:
I Translating CONE interface macros into a form the SPM

can act upon
r Providing session memory requirements using the CONE

buffer manager
r Providing session timer requirements using the CONE

timer manager
r Providing much of the session abort processing capabil-

ities
I Managing the underlying transport connection.

The SPM is responsible for servicing the OSI session

Fig, 1, Architecturc for the OS/ Express implementation of
the session layer.

protocol requirements. The three primary functions the
SPM performs are:
I Coordinating state table transitions
I Encoding SPDUs (session protocol data units)
I Decoding SPDUs.

Most of the future changes to the session standard will
affect these three SPM operations. Therefore, maintainabil-
ity was a critical concern in design decisions for the SPM.

Session State Table
Aside from some clarifying text, the entire OSI session

protocol can be defined in terms of tables. Ten separate
tables dictate session protocol behavior. A portion of a
typical session state table is represented in Fig. 2. The
intersection of any given session event (outbound session
primitive or inbound SPDU) with a valid session protocol
state indicates a set of specific actions and the new protocol
state to enter. For example, once the underlying transport
connection is established, the SPM is in state STA01C. When
a CN event arrives (indicating a successful connection with
another session layer) the SPM will change state if the
proper predicate conditions are met. In this example, if the
predicate condition

^p01
is satisfied, a transition to state

STAOS occurs, which causes the SPM to generate a session
connect indication (SCONind) to its session user.

A fully functional OSI session service implementation
is responsible for coordinating the intersection of approx-
imately B0 different session events with 32 different pro-
tocol states. This creates 2560 possible state table transi-
tions. Close examination of the session state tables reveals
that only 600 of the 2560 possible state table transitions
are considered to be valid. Also, many of the valid inter-
sections result in the same actions and next states.

A straightforward and common approach to implement-
ing the behavior of these state tables is to create a massive
series of if-then-else and/or switch statements that account for
each of the valid session event-state intersections. With
600 valid intersections to account for, the code's complex-
ity is high and its maintainability low.

For the OSI Express card implementation of the session
protocol the objective was to exploit the tabular structure
of the OSI session protocol as much as possible. By creating
a structure of multidimensional arrays corresponding to

FEBRUARy 1990 HEWLETT-pAcrnno ,.touRnnr 29

the OSI session state tables, a direct relationship can be lfflll
maintained between the OSI standard and the implemen- session !!!!!! Evenr Index
tation. As illustrated in Fig. 3, the basic scheme is as fol- Event

.+

lows:
r Enumerated values of the current session SPM state and

the incoming session event are used as indexes into a
combination of arrays that generate a pair of event and
state indexes.srare rnoexes ------

I Ten two-dimensional static arrays are defined, one for session Llllfffl I
^^^L ^ { rL^ a^ - - -^+^^^ t ^+^+^ +^L t^^ r^ { : - ^ r i - +L^ ^c r sp l t i l q r " ro - - - - - - l l l l l l - Ie a c h o f t h e 1 0 p r o t o c o l s t a t e t a b l e s d e f i n e d i n t h e o S I S P M S t a t e I I I I l I _ |
session protocol standard. These arrays are called sparse llllll

-:llll Istate table arrays. Each element in a sparse state table lllraaafff I
array is an unsigned byte that represents an index for a tailllila

Iunique C function that is responsible for processing the l!!,aaaa I
specific actions of an event-state intersection. The event llllll)

and state indexes generated above are used to select the I runction Index
correct sparse state table array and serve as indexes into

. [fr'il'f#::: :'"",:".'::::::'.'ffi: r:ffi:','.r::i:;.-lllii! l'^:x",l':
to a function from an array of function pointers. The rltlll J

selected function is then invoked to service the require-
ments dictated by the session event and the SPM state. Flg. 3. Multidimensional arrays used to tmplement the OS/

Invoking functions from pointer arrays (also known as Express version of the OS/ sesslon state fables Event and
. , , , \ . r , , , -_. _^_..^_r..r SPM state identi f iers are used to index into the arrays and
] u m p I a o l e S J l s o n e o I I n e r a r e r y u s e o y e I v e r v p o w e r I u l .
capabilities of the C programming l".rgnug".'

'- acquire pointers to the functions that carry out the actions
qutred.

Encoding and Decoding SPDUs
Array manipulation also plays a key role in how the the particular parameters of the SPDU. PI units are used

session implementation performs the tasks of encoding and to encapsulate parameter values such as token items and
decoding SPDUs. SPDUs are constructed in a fairly simple reason codes, while PGIs are primarily used to encapsulate
variable format that can be nested three levels deep. groups of related PI units. Each PI and PGI unit consists

As illustrated in Fig. 4, the mandatory SI (SPDU iden- of a PI or PGI value identifying the type of parameters,
tifierJ value identifies the type of SPDU. The LI (length followed by a length value. The PI unit terminates with
indicator) following the SI value indicates how many bltes the parameter value while the PGI unit follows with either
remain in the SPDU. The remainder of the SPDU consists a parameter or one or more encapsulated PI units. The
of an optional combination of PGI (parameter group iden- order in which PI and PGI units appear in an SPDU is also
tifier) units and PI (parameter identifier) units to define important and is uniquely specified for each SPDU.

// : States that Are not Logically Possible
* : lnvalid States

30 ffwrerr PACKABD JoURNAL FEBRUARY i990

Fig.2. A portion of a typical state
table for the sesslon protocol.

PGI Uni t PGI Unit

Pl Unit Pl Unit Pl Unit Pl Unit

LI
PGI
PI
PV
sl

= Lengthlndicator
= Parameter Group ldentifier
= Parameter ldentifier
= ParameterValue
= SPDU ldentifier

Fig.4. Sesslon prctocol data unit (SPDU) format.

A fully functional session implementation is required to
encode and decode approximately 20 different types of
SPDUs. There are about 30 different types of PI or PGI units
that make up these 20 SPDUs, with many SPDUs using the
same type of PI and PGI units. PI and PGI units have certain
parameter attributes associated with them, such as the
maximum number of bytes the parameter may occupy in
an SPDU. Because so many of the SPDUs contain the same
types of parameters, and since the same parameter attribute
information is needed for both encoding and decoding the
SPDUs, the decision was made to define the parameter and
ordering attributes only once and make this information
available for both the encoding and the decoding processes.

Fig. 5 illustrates the manner in which the SPM encodes
and decodes SPDUs. Once the SPDU identifier value for
the SPDU is determined, it serves as an index into an SPDU
script directory array which contains the script index (lo-
cation) and size of an SPDU script located in the SPDU
script array. The SPDU script array contains scripts that
define the order in which parameters should appear in
each SPDU and indicate whether the parameters are man-
datory or optional in that particular SPDU. For each param-
eter of the SPDU, the SPDU script array also provides an
index that selects parameter attribute information from the
parameter attribute array.

Two independent programming modules are required to
build and parse the SPDUs. They share the information
provided by the SPDU and parameter structures defined
above.

Parameter
Attribute

Array

ACSE and Presentation Layer

The Association Control Service Element (ACSE) is the
common protocol for the seventh layer of the OSI hierar-
chy.t'''t ACSE is meant to be used to establish and termi-
nate an association between applications and to negotiate
things that are common to applications, which can be on
separate systems. The most important function provided
by this common protocol is the negotiation related to the
application context parameter. This parameter is a regis-
tered name that is passed between applications in the ACSE
connect PDU. The application context parameter defines
the scope of an application's functionality and is used by
local applications to ensure that the remote application is
appropriate for a particular association.

The presentation layer is the sixth layer of the OSI
model.a's The presentation layer's job is to negotiate com-
mon transfer and abstract syntaxes that can be used by
applications when transferring various data structures back
and forth. Abstract syntax refers to the meaning of the data,
and transfer syntax refers to the manner of encoding the
data bits.

An application can use the presentation layer to specify
several abstract syntaxes for use during an association. For
example, an application might specify ACSE and virtual
terminal as two abstract syntaxes to be used together in a
specific association. The presentation layer will negotiate
these two abstract syntaxes during the connection estab-
Iishment and add the transfer syntaxes for each of the
abstract syntaxes it is able to support. If these combinations
are acceptable to both sides, subsequent data transfers are
transferred with presentation tags denoting the particular
abstract syntax (and thus which process should receive
this data). The data is encoded in the negotiated transfer
syntax and transformed to and from the local representation
by the presentation service.

OSI Express lmplementation
In the OSI Express card, the ACSE and presentation

layers are located in the same code section because both
layers share the same challenge in their implementation.
The main complexity encountered in implementing ACSE
and presentation service on a card involved the encoding
and decoding of the ACSE and presentation protocol data
units (PDUs) specified by Abstract Syntax Notation One
(ASN.1).6 The protocol data units contain the protocol con-

Fig. 5. Ihe method by which the
sesslon protocol manager (SpM)
encodes and decodes SPDUs.

FEBRUARY 1990 HEWLETT-PACKAFD JoURNAL 31

SPDU Encoding Attributes

SPDU Decoding Attributes

trol information and data that are exchanged between two

instances of any protocol. Most protocols (e.9., transport,
network, LLC) specify the contents (transfer and abstract
syntax) of their PDUs by means of text within their protocol

specification document. Most of the upper-layer protocols,

such as FTAM, directory services, ACSE, and presentation,

use standard and more formal specifications contained in

ASN.1 .
The OSI Express implementation separates the presenta-

tion service into two parts: the protocol that provides trans-
fer and abstract syntax negotiation for applications, and
the transformation of user data from ASN.1 transfer syntax
to the local representation specified by the abstract syntax
and vice versa. Only the protocol is implemented on the
card and described in this article, while the remaining
transformation of user data occurs in the host system. User
data is delivered to the host fully encoded in the agreed
upon transfer syntax for a particular abstract syntax. Host

software recognizes the abstract syntax from a tag (presen-

tation context identifier) in the PDU and directly transforms
the data from the transfer syntax into a local form recogniz-
able to the particular application service element. Except
for encoding and decoding PDUs, implementation of the
presentation protocol was straightforward.

Two key considerations were identified during the de-
sign phase: memory use and the stability of the OSI ACSE
and presentation standards. For memory use our goal was
not to require a contiguous block of physical memory for
either encoding or decoding since large memory buffers in
our memory management scheme are not guaranteed. This

consideration quickly eliminated many alternative designs.
When we were doing our design the OSI standards were
just gaining draft approval status with many changes prom-

ised in the future. Therefore, our design and architecture
had to be easy to modify. The structure of the ACSE/presen-
tation module is shown in Fig. 6. This architecture is simi-
lar to that used by other layers in the OSI Express card.
The protocol machine is isolated from the CONE architec-
ture by the ACSE/presentation CONE manager. The CONE
manager provides a simple interface to the protocol

machine and insulates the protocol machine from concerns
of state transitions and memory availability. CONE is de-

scribed in the article on page 18. The heart of the ACSE
and presentation protocol implementation is the PDU en-
coder and decoder. Understanding some basic attributes
of ASN.1 provides some insight into the technical solution
of encoding and decoding PDUs for the presentation and
ACSE protocols.

ASN.1
ASN.1 defines a means to specify the different types of

data structures that can be transferred between protocol

Iayers. The ASN.1 standard does not specify the encoding
to be used for each type. A companion standardT defines
the encoding rules which together with the ACSE and pres-

entation specifications define the bit encodings used be-
tween the ACSE and presentation protocol layers. The fol-
Iowing discussion does not differentiate between the term
ASN.1 and the encoding rules since only one set of encod-
ing rules exists for ASN.1.

The basic concept underlying ASN.1 encoding is quite

32 sEwrErr-pncKAFD JoURNAL FEBRUARY 1990

simple. Primitive values are encoded as tag, length, and
value. The tag identifies the type of value, length indicates
the length of the value, and value represents the contents
of the PDU being encoded. Simple primitive types pre-
defined by ASN.1 include character string, Boolean, in-
teger, and real. Primitive types can also be bit string or
octet string. However, the encoding of these types is op-
tional. Primitive values are values that cannot be broken
down further into other ASN.1 values. ASN.1 also defines
complex types, whose values can be broken into additional
types.

To accommodate the need to encode complex types, val-
ues can be constructed within outer structure definitions.
The encoding rules allow a value to consist of another tag,
length, and value. Structure definitions for these complex
types include:
I Sequence. A fixed ordered list of types.
I Sequence Of. An ordered list of a single type.
I Set. A fixed unordered list of types.
I Set Of. A fixed unordered list of a single type.
I Choice. A fixed unordered list of exclusive types.

These constructed types can be composed of additional
constructed types. ASN.1 allows recursive PDU definitions
that result in an unbounded collection of permissible se-
quences. The OSI Express presentation layer has several
unbounded sequence types within its connect PDUs. Since
values can represent constructed values of tags, lengths,
and other values, nesting is prevalent in ASN.1 encodings.
In fact, encodings of nested tags and lengths often make
up a major portion of an encoded PDU.

An example of an ASN.1 representation of a single pres-
entation PDU, connect confirm negative, is shown in Fig.
7. The PDU description has six parameters, which are de-
fined as follows:
I Protocol-version. The presentation protocol version being

used (currently only one exists).
r Responding-presentation-selector. This is presentation layer

addressing information.
I Presentation-context-definition-result-list. This structure con-

tains information about which abstract syntaxes are ac-
cepted at the initial connection and which transfer syn-
tax is accepted for the transfer of PDUs encoded in the
selected abstract syntaxes.

r Default-context-result. This structure specifies whether the

Fig. 6. OS/ Express card ACSE|presentation architecture

{ S E T i x . 4 1 0 - 1 9 8 4

SEQUENCE
i t 0 I r M P L r c r r

t 1 I T M P L I C T T

ts l r r , lP l r c rT

proposed default context is accepted.
I Provider-reason. This structure contains fields for declaring

the reason for refusing the connection associated with a
particular PDU.

I User-data. This is data that an application wishes to in-
clude on this presentation service primitive.
This PDU is a complex type of Choice. It is a Choice of

either Set or Sequence, and in this case Sequence is always
used. The first parameter, Protocol-version, has a context-spe-
cific tag of 0, as denoted by the tOl. Protocol-version is further
defined as a BIT STRING, with the only acceptable value
being version-l the value of 0, as denoted by (O). The Presen-
tation-contelit-definition-result-list is a complex type with three
primitive types: Result, Transfer-syntax-name, and Provider-
reason. The values in parentheses to the right of the six
parameters denote the values for specific semantics. For
example, a value of 1t; for a Default-context-result means that
the application rejected this default context.

Multiple levels of nesting also make decoding and verify-
ing the length fields challenging. Length fields can be en-
coded in one of two ways: definite and indefinite. Definite
lengths must be kept and verified during decoding and

C P R - t y p e ; : = C H O I C E

indefinite lengths require the decoder to keep track of
where end-of-contents (EOC) flags appear in the PDU defi-
nition. Definite and indefinite lengths can appear together
in the same PDU at the discretion of the encoder.

Fig. B shows the encoded PDU defined by the ASN.1
declaration in Fig. 7. The numbers are the hexadecimal
values derived by using the basic encoding rules defined
in reference 7, and they represent the values used to de-
scribe the semantics defined in Fig. 7. Each line represents
a tag and a length. The values for complex types appear
on the l ines fol lowing the complex type declarat ion, and
primit ive types include the value on the same l ine. Tag
values are derived from the encoding rules with each bit
indicating the tag type (complex of primitive type) and the
value of the tag. Fig. Ba begins with so, which is the univer-
sal tag type for Sequence, followed by 80, which represents
an indefinite length. For each indefinite length field, a
corresponding EOC flag consisting of two octets of zeros
must fol low. Only complex types can be encoded using
indefinite lengths. Fig. Bb shows the same encoded PDU
using definite length encoding. Note that 80 is replaced
with the definite length indicator 28. Also note that the

Fig.7. An ASN.7 speclrticationfor
the presentation connect confirm
neoative PDU.

APDUs . RTORJapdu)

P r o t o c o l - v e r s i o n D E F A U L T { v e r s i o n - 1 } ,
P r o t o c o l - v e r s i o n : : = B I T S T R I N G { v e r s i o n - 1 (0) }

R e s p o n d i n g - p r e s e n t a t i o n - s e l e c t o r O p T I O N A L ,
R e s p o n d i n g - p r e s e n t a L i . o n - s e l e c t o r : : = O C T E T S T R I N G

P r e s e n t a t i o n - c o n t e x t - d e f i . n i t i . o n - r e s u l t -] i s t O P T I O N A L ,
P r e s e n t a t i o n - c o n t e x t - d e ' f i . n i t i o n - r e s u l t - I i s L : : =
SEQUENCE OF SEQUENCE
{ [0] I M P L I C I T R e s u l t

R e s u l L : : = I N T E G E R { a c c e p t a n c e (0) ,
u s e r - r e j e c t i o n (1) ,
p r o v i d e r - r e j e c t i o n (2)

)

[1] I M P L I C I T T r a n s f e r - s y n t a x - n a m e O P T I O N A L ,
T r a n s f o " - < \ / h r - v - h r h - . . = O B J E C T I D E N T I F I E R

p r o v i d e r - r e a s o n [2] I] , 1 P L I C I T I N T E G E R
{ r e a s o n - n o t - s p e c i f i e d (0) ,

a b s t r a c t - s y n t a x - n o t - s u p p o r t e d (1) ,
p r o p o s e d - t r a n s f e r - s y n t a x e s - n o t - s u p p o r t e d (2) ,
I o c a l - 1 i m i t - o n - D c S - e x c e e d e d (3)

) oPTTONAL

1 7)

)
I M P L I C I T D e f a u l t - c o n t e x t - r e s u l t O P T I O N A L .

D e f a u l t - c o n t e x t - r e s u l t : : = I N T E G E R
{ a c c e p ! a n c e (0) ,

u s e r - r e j e c t i o n (1) ,

\ p r o v i d e r
- r e j e c t i o n (2)

[1 0 j I M P L I C I T P r o v i d e r - r e a s o n O P T I O N A L
P r o v i d e r - r e a s o n : : = I N T E G E R

{ r e a s o n - n o t - s p e c i f i e d (0) ,
t e m p o r a r y - c o n g e s t i o n (1) ,
l o c a I - 1 i m i t - e x c e e d e d (2) ,
c a 1 l e d - p r e s e n t a t i o n - a d d r e s s - u n k n o w n (3) .
p r o t o c o l - v e r s i o n - n o t - s u p p o n t e d (5) ,
d e f a u l t - c o n t e x t - n o t - s u p p o n t e d (6) ,
u s e r - d a ! a - n o t - r e a d a b l e (6) .

FEBRUARy 1990 HEWLETT-pAcrnRo.touRul 33

U S E r - d A t A O P T I O N A L
n o - P S A P - a v a i l l a b 1 e (7) \

Responding-presentation-selector is encoded in two ways, both

of which are valid since octet strings can be encoded as

constructed types at the discretion of the sender. In Fig.

Ba a constructed type is used to break the Responding-presen-

tation-selector value into three primitive encodings, each with

a tag of 04 (universal tag type for octet stringJ and a length

of oz. Fig. Bb merely encodes the entire value as a primitive

with a length of 06. ASN.1 encoding rules are not deter-

ministic because the encodings given Figs. Ba and Bb are
valid for the same PDU.

Another important aspect of ASN.1 is the concept of a
context-specific tag. Some tag values are universal in scope
and apply to all ASN.1 encodings. Other tag types assume
values whose meaning is specific to a particular PDU. For
example, context-specific tag value [o] identifies the presen-

tation Protocol-version in Fig. 7. This tag value only means
Protocol-version when encountered in a presentation connect
confirm negative PDU. In another PDU, the value [0] means
something else entirely.

Context tags allow a protocol designer to assign a tag
value such that the value of the tag determines the type of
value. To decode and validate the PDU, the decoder must

have knowledge of a protocol's context-specific values,
their meanings, and the order and range of the PDU primi-

tive values. This means that some parts of an ASN.1 de-
coder may be generic to any ASN.1 encoded PDU (such as
an ASN.1 integer decode routine), while other parts of the
decoder are quite specific to a single PDU (such as the

checking needed to verify that presentation transfer syn-
taxes are in the appropriate sequence).

A final key to understanding ASN.1 encoding rules is

that in almost all cases, the sender chooses which options
to use. These options include the way in which lengths
are encoded and when constructed elements may be seg-
mented. Octet strings, for example, may optionally be sent
as a contiguous string or parsed into a constructed version
with many pieces, which may themselves be segmented.
A decoder must handle any combination of the above.
Thus, the decoder must be able to handle an almost infinite
number of byte combinations for PDUs of any complexity.
This makes the decoder more complicated to construct
than an encoder. For example, Fig. B shows that the Respond-
ing-presentation-selector can be encoded in two ways-both

val id.

Encoder
The encoder is responsible for encoding outbound data

packets based on the ASN.1 syntax. Because the encoder
can select a limited set of options within the rather large

ASN.1 set of choices, encoding is much easier than decod-
ing. The main requirement of the encoder is to know the
syntax of the PDU to be constructed. In particular, it needs

to know the order and values of the tags and be equipped
with the mechanisms to encode the actual lengths and
values.

The OSI Express card implementation encodes PDUs
front to back using indefinite length encoding. An alterna-
tive, encoding ASN.1 back to front, has the advantage of
being able to calculate the lengths and allow definite length
encoding. Once all of the primitive values are encoded,
the encoder can work backwards, filling in all of the con-

34 HEWLETI'-pAcKARD JoURNAL FEBRUARY 1990

structed tag lengths. However, encoding back to front does
not allow data streaming, since all of the PDU must be
present and encoded (including user data) to calculate the
lengths. Without data streaming, large pieces of shared
memory must be used, thus making memory unavailable
to the rest of the card's processes until all of the PDU and
its user data has been encoded.

The encoder is table-driven in that a set of tables is used
for each type of PDU. Each table contains constants for the
tag and length and an index to a routine for a particular

value. A generic algorithm uses the tables to build each
PDU. The tables allow modifications to be made easily
when there are changes to the OSI standards. OSI standards
for tag values and primitives changed constantly during
our implementation. However, these changes merely meant
changing a constant used by the table (often a simple macro

30 80 SEQUENCE

8 0 0 2 0 7 8 0 P r o t o c o l - v e r s i o n

a 3 8 0
0 4 0 2 0 1 0 2
0 4 0 2 0 3 0 4
0 4 0 2 0 5 0 6

0 0 0 0

a 5 I 0

R e s p o n d i n g - p r e s e n l a t j . o n - s e l e c t o r

E O C

P r e s e n t a t i o n - c o n t e x t - d e f i n i t i o n -

r e s u l ! - I i s t
I M P L l C l T S E Q U E N C E

30 80 SEQUENCE
8 0 0 1 0 0 R e s u l t
8 1 0 2 5 1 0 1 T r a n s f e r - s y n t a x - n a n e

0 0 0 0 E O c

0 0

3 0

0 0

0 0 0 0

8O SEQUENCE
8 0 0 1 0 0 R e s u l . t
8 1 0 2 5 1 0 1 T r a n s f e r - s y n t a x - n a m e
00 Eoc

8O SEQUENCE
8 0 0 1 0 1 R e s u l r
00 Eoc

EOC

8 7 0 1 0 3 D e f a u l l - c o n t e x t - r e s u l !

8 a 0 1 0 0 P r o v i d e r - r e a s o n

0 0 0 0 E o c

(a)

3 0 2 B

8 0 0 2 0 7 8 0

8 3 0 6 0 1 0 2 0 3

3 0 0 7
8 0 0 1 0 0
8 1 0 2 5 1 0 1

3 0 0 7
8 0 0 1 0 0
8 1 0 2 5 1 0 1

3 0 0 3
8 0 0 1 0 1

8 7 0 1 0 3

8 a 0 1 0 0

(b)

SEQUENCE

P r o t o c o l - v e r s i o n

0 4 0 5 0 6 R e s p o n d i n g - p r e s e n l a t i o n - s e l e c t o r

P r e s e n t a t i o n - c o n t e x t - d e f i n i l i o n -
r e s u l t - l i s t
i I . I P L i C I T S E Q U E N C E

S E Q U E N C E
R e s u l !
T r ^ h < f a r - < v h t ^ Y - n A h a

S E Q U E N C E
R e s u l t
T r a n s f e r _ s y n t a x - n a m e

S E Q U E N C E
R e s u l l

D e f a u l t - c o n ! e x l - r e s u l t

P r o v i d e r ' r e a s o n

Fig. 8. Encoding for the PDU shown in Fig. 7 . (a) lndef inite
length encoding. (b) Definite length encoding.

\

update). Changing the order or adding or deleting a value
was also easy because only the table entries had to be
altered.

Decoder
The decoder presented a more significant challenge in

the ACSE/presentation protocol machine. In an effort to
reduce memory requirements, the decoder does not depend
upon having the entire PDU in memory to decode. Pieces
can be received separately, and these need to be decoded
and the memory released. The decoder also does not require
contiguous memory. PDU segments can be received from
the session layer according to the transport segment size.
In addition, the memory manager on the card presents

PDUs in separate physical buffers called line data buffers
(see the article on page 18, which describes the CONE
memory manager.).

The main job of the decoder is to find the primitive
values encoded within the complex nesting of tags and
values, and extract those primitives. Along the way, the
decoder must also verify that the outer constructed tags
are correct, and that the lengths associated with all the
constructed tags are correct.

The decoder uses a mathematical calculation to predict
and check directly the appropriate tag values. The idea is
to generate a unique token that directly identifies particular
primitive values. This unique tag is calculated by succes-
sively using the outer nested tag values to create a unique
number that can be predicted a priori. For example, a sim-
ple method to calculate a unique value for any primitive
is to take every constructed tag value and add it to the total
calculated from previous constructed tags, and then multi-
ply the new total by some base. This calculation derives a
unique value for every primitive in a PDU. The unique
value can be calculated statically from the standard. Our
implementation uses the same constants as were used in
the encoding tables above to construct a compiled constant.
The unique value can then be calculated dynamically as
the decoder goes through a received PDU. Thus, as the
decoder is parsing a PDU and successively reading con-
structed tags, it is calculating the cunenLunique-tag : (old-

unique_tag X baseJ + tag-value.
The advantage of this method is that a generic decode

routine can be used to validate ASN.1 syntax, and as soon
as a primitive is reached within a nested PDU, the generic
routine can jump directly to a specific routine to deal with
the primitive. The value can be checked for specifics and
then used or stored. The generic routine is relatively sim-
ple. It merely loops looking for a tag, length, and value. If
the value is not a primitive it calculates the unique tag.
Otherwise it uses the calculated unique tag to know which
routine to call. Much of the syntax is automatically verified
during the calculation.

The disadvantage of using such a calculation is that while
it guarantees a unique number, the number may grow quite
large as the depth of nesting within a PDU grows. The
problem is that the base used must be at least as large as
the total number of tag values. Thus, the unique tag must
be able to represent a number as large as the base to the
nth power, where n is the depth of nesting required. PDUs
that allow very large nesting may not be suitable for unique

tag calculation if the largest reasonable number cannot hold
the maximum calculated unique tag. Calculating a unique
tag has proven to be fairly quick in comparison to using a
structure definition to verify each incoming PDU.

Once a primitive tag value is reached, the derived unique

tag is used to vector to a procedure specific to that primitive.

The procedure contains the code to deal with the primitive.
The decoder has a switch table of valid tags, as well as a

bit table used to determine correct orders of values and
mandatory or optional field checks. This mechanism al-
lows the decoder to identify quickly the primitives nested
within a complex PDU, verify correctness, and take the
necessary action.

The decoder must perform two types of length checking:
definite lengths in which lengths must be kept and verified,
and indefinite lengths in which the decoder must keep
track of end-of-contents flags. Definite and indefinite

lengths can appear together in the same PDU at the discre-
tion of the encoder. The decoder uses two stacks in parallel

to check the lengths, one for definite values, and one for

EoCs. The definite length stack pushes a value for each
constructor type encountered and subtracts a primitive
length from each of the appropriate constructor values in

the stack. When the last, innermost primitive is subtracted,
the appropriate constructor values are popped from the
stack. Using and saving stacks allows the decoder to receive
PDU segments and decode part way, stop, save the stack
values, and resume decoding when the next PDU segment
is received. Thus, a complete PDU does not have to be
received before memory can be released back to the card
memory pool. With this design we have not noticed any
difference in the amount of time it takes to decode definite
and indefinite length types.

Using a Compiler
During the design phase, the option of using an ASN.1

compiler was considered for the ACSE and presentation
protocol machines. The main advantage of a compiler is
that once the compiler is written, any protocol specification
that uses ASN.1 can be compiled into useful object code.
The object code then interacts with the protocol machine
via a set of interface structures. The disadvantages of com-
pilers are that'they are complicated to write and existing
compilers expect PDUs to be decoded from contiguous buf-
fers. The generic code produced is also larger than the
specific code necessary for relatively small protocols.
Given the requirement to stream PDUs in memory seg-
ments, to use as little memory as possible, and to decode
only ACSE and presentation PDUs, the compiler alternative
was not as attractive as it might be in other applications.

References
1. Informotion Processing Systems - Open Systems Interconnec-
tion - Applicotion Layer Structure, ISO/DP 9545, ISO/TCS7/SC2I1
N1743. lu ly 2a,1987. Revised November 1987.
2. Information Processing Systems - Open Systems Interconnec-
tion - Specificotion of Abstroct Syntox Nototion One (ASN.1J, ISO
8824:1.987 (E).

3. Informotion Processing Systems - Open Systems Interconnec-
tion - Specification of Bosic Encoding Rules for Abstroct Syntox
Notot ion One {ASN.1J, ISO 8825: 1987 (E).
4. Information Processing Systems - Open Systems Interconnec-

/

FEBRUARy r 990 HEWLETT-pAcrnRo ;ounNnr 35

tion - Service Definition for the Associotion Control Service Ele-
ment, ISO 864e: 1e87 (E) (ISO/IEC ITC1/SC21 N2326).
5. Informotion Processing Systems - Open Systems Interconnec-
tion - Protocol Definition for the Associotion Control Service EIe-
ment, ISO 8650: 1e87 (El (ISO/IEC ITC1/SC21 N2327).
6. In/ormotion Processing Systems - Open Systems Interconnec-

tion - Connection Oriented Presentotion Service Specificotion,
ISO 8822: 1988 (ISO/IEC ITC1/SC21 N2335).
7. lnformation Processing Systems - Open Systems Interconnec-
tion - Connection Oriented Presentotion Protocol Specificotion,
ISO 8822: 1988 (ISO/IEC lTCl/SC21 N2336).

lmplementation of the OSI Class 4
Transport Layer Protocol in the HP OSI
Express Card
The HP OSI Express card's implementation of thetransport
layer protocol provides flow control, congestion control, and
congesfion avoidance.

by Rex A. Pugh

Fm TRANSPORT LAYER is responsible for provid-
ing reliable end-to-end transport services, such as
error detection and recovery, multiplexing, address-

ing, flow control, and other features. These services relieve
the upper-layer user (typically the session layer) of any
concern about the details of achieving reliable cost-effec-
tive data transfers. These services are provided on top of
both connection-oriented and connectionless network pro-
tocols. Basically, the transport layer is responsible for con-
verting the quality of service provided by the network layer
into the quality of services demanded by the upper layer
protocol.

This article describes the OSI Express card's implemen-
tation of OSI Class 4 Transport Protocol (TP). The OSI
Express TP4 implementation extends the definition of the
OSI transport layer's basic flow control mechanisms to pro-
vide congestion avoidance and congestion control for the
network and the OSI Express card itself. Because we have
requirements to support a large number of connections on
a fairly inexpensive platform, the memory management
and flow control schemes are designed to work closely
together and to use the card's limited memory as efficiently
as possible. This efficiency also includes ensuring fair buf-
fer utilization among connections.

Flow Control Basics

An introduction to the basic concepts of flow control,
congestion control, and congestion avoidance is useful in
setting the stage for a discussion of the OSI Express card
TP4 implementation. These concepts are related because
they all solve the problem of resource management in the

36 riewrerr-pncKARD JoURNAL FEBRUARv 1 990

network. They are also distinct because they solve resource
problems either in different parts of the network or in a
different manner.

Flow Control
Flow control is the process of controlling the flow of

data between two network entities. Flow control at the
transport layer is needed because of the interactions be-
tween the transport service users, the transport protocol
machines, and the network service. A transport entity can
be modeled as a pair of queues (inbound and outbound)
between the transport service user and the transport pro-
tocol machine, and a set of buffers dedicated to receiving
inbound data and/or storing outbound data for retransmis-
sion (see Fig. 1). The transport entity would want to restrain
the rate of transport protocol data unit (TPDU-) transmis-
sion over a connection from another transport entity for
the following reasons:
r The user of the receiving transport entity cannot keep

up with the flow of inbound data. In other words, the
inbound queue between the transport service user and
the transport protocol machine has grown too deep.

I The receiving transport entity does not have enough buf-
fers to keep up with the flow of inbound data from the
network.
Note that analogous situations exist in the outbound di-

rection, but they are usually handled internally between
the transport user and the transport entity. If the sending
transport entity does not have enough buffers to keep up
with the flow of data from the transport user, or the sending
transport entity is flow controlled by the receiving transport

'A TPDU contains transport layer control commands and data packets.

ent flow control practices, but all entities on a network
must follow the same congestion control strategy. The pur-
pose of congestion control is to control network traffic to
reduce resource overload.

Congestion Avoidance
Congestion control helps to improve performance after

congestion has occurred. Congestion avoidance tries to
keep congestion from occurring. Thus congestion control
procedures are curative while congestion avoidance proce-
dures are preventive. Given that a graph of throughput
versus network load typically looks like Fig.2,a congestion
avoidance scheme should cause the network to oscillate
slightly around the knee, while a congestion control
scheme tries to minimize the chances of going over the
cliff. The knee is the optimal operating point because in-
creases in load do not offer a proportional increase in
throughput, and it provides a certain amount of reserve for
the natural burstiness associated with network traffic.

Flow Control Mechanisms in TP4

The OSI Class 4 Transport, or TP4, protocol is described
in ISO document number 8073. It provides a reliable end-
to-end data transfer service by using error detection and
recovery mechanisms. Flow control is an inherent part of
this reliable service. This section will describe the protocol
mechanisms that are used to provide flow control in OSI
TP4. These mechanisms make use of the TP4 data stream
structure, TPDU numbering, and TPDU acknowledgments.

TP4 Data Stream Structure
The main service provided by the transport layer is, of

course, data transfer. Two types of transfer service are avail-
able from TP4: a normal data service and an expedited data
service. Expedited data at the transport layer bypasses nor-
mal data end-to-end flow control. so we need not concern
ourselves with expedited data when discussing TP4 flow
control.

The OSI transport service (TS) interface is modeled as a
set of primitives through which information is passed be-
tween the TS provider and the TS user. Normal TS user
data is given to the transport layer by the sending TS user
in a transport data request primitive. TS user data is deliv-
ered to the receiving TS user in a transport data indication

Transport
Service
lntertace

Fig. 1. Model of a transport entity

Flg.2. A typical graph of throughput versus network load. A
congestion avoidance scheme should cause the network to
oscillate around the knee, while a congestion control scheme
tries to minimize the chances of going over the clift.

FEBRUARv r99o HEWLETT-pAoKARD JoURNAL 37

entity, then the transport user must be flow controlled by
some backpressure mechanism caused by the outbound
queue's growing too deep.

Thus flow control is a two-party agreement between the
transport entities of a connection to limit the flow of packets
without taking into account the load on the network. Its
purpose is to ensure that a packet arriving at its destination
is given the resources it needs to be processed up to the
transport user.

Congestion Control
While flow control is used to prevent end system re-

sources from being overrun, congestion control is used to
keep resources along a network path from becoming con-
gested. Congestion is said to occur in the network when
the resource demands exceed the capacity and packets are
lost because of too much queuing in the network.

Congestion control is usually categorized as a network
Iayer function. In an X.25 type network where the network
layer is connection-oriented, the congestion problem is
handled by reserving resources at each of the routers along
a path during connection setup. The X.25 flow control
mechanism can be used between the X.25 routers to ensure
that these resources do not become congested. With a con-
nectionless network layer like ISO 8473, the routers can
detect that they are becoming congested, but there are no
explicit flow control mechanisms (like choke packetsl) that
can be used by the OSI network layer alone for controlling
congestion.

The most promising approach to congestion control in
connectionless networks is the use of implicit techniques
whereby the transport entities are notified that the network
is becoming congested. The binary feedback scheme2 is an
example of such a notification technique. The transport
entities can relieve the congestion by exercising varying
degrees of flow control.

Thus congestion control is a social agreement among
network entities. Different connections mav choose differ-

Session
Layer

o
E

o
c
F

Load

primitive.
The data carried in each transport data request and trans-

port data indication primitive is called a transport service
data unit (TSDU). There is no limit on the length of a TSDU.
To deliver a TSDU, the transport protocol may segment
the TSDU into multiple data transport protocol data units
(DT TPDUs). The maximum data TPDU size is negotiated
for each connection at connection establishment. Negotia-
tion of a particular size depends on the internal buffer
management scheme and the maximum packet size sup-
ported by the underlying network service. The maximum
TPDU sizes al lowed in TPa are 128, 256,51,2, 1,024,2048,
4096. and 8192 octets.*

TPDU Numbering
The error detection, recovery, and flow control functions

all rely on TPDU numbering. Unlike ARPA TCP, where
sequencing is based on numbering each byte in the data
stream since connection establishment, TP4 sequencing is
based on numbering each TPDU in the data stream since
connection establishment. A transport entity allocates the
sequence number zero to the first DT TPDU that it transmits
for a transport connection. For subsequent DT TPDUs sent
on the same transport connection, the transport entity allo-
cates a sequence number one greater than the previous one,
modulo the sequence space size (see Fig. 3).

The sequence number is carried in the header of each
DT TPDU and its corresponding AK (acknowledgment)
TPDU. The sequence number field can be either 7 ot 31,
bits long. The size of the sequence space is negotiated at
connection establishment. Since a transport entity must
wait until the network's maximum packet lifetime has ex-
pired before reusing a sequence number, the 31-bit se-
quence space is preferred for performance reasons.

TP4 Acknowledgments
An AK (acknowledgment) TPDU is used in OSI TP4 for

the following reasons:
I It is the third part of the three-way handshake that is

used for connection establishment (see Fig. 4). It ac-
knowledges the receipt of the CC (connect confirm)
TPDU.

I It is used to provide the connection assurance or keep-
alive function. To detect an unsignaled loss of the net-
work connection or failure of the remote transport entity,
an inactivity timer is used. A connection's inactivity

.An octet is eight bits.

End Syslem End System

Fig. 4. Three-way handshake used for connection estab/lsh-
ment.

timer is reset each time a valid TPDU is received on that
connection. If a connection's inactivity timer expires,
the connection is presumed lost and the local transport
entity invokes its release procedures for the connection.
The keep-alive function maintains an idle connection
by periodically transmitting an AK TPDU upon expira-
tion of the window timer. Thus the interval of one trans-
port entity's window timer must be less than that of its
peer's inactivity timer. Since there is no mechanism for
sharing information about timer values, a transport en-
tity must respond to the receipt of a duplicate AK TPDU
not containing the FCC (flow control confirmation) pa-
rameter by transmitting an AK TPDU containing the
FCC parameter. Thus, a transport entity can provoke
another transport entity into sending an AK TPDU to
keep the connection alive by transmitting a duplicate
AK TPDU.

r It is used to acknowledge the in-sequence receipt of one
or more DT TPDUs. Since OSI TP4 retains DT TPDUs
until acknowledgment (for possible retransmission), re-
ceipt of an AK TPDU allows the sender to release the
acknowledged TPDUs and free transmit buffers. To ac-
knowledge the receipt of multiple DT TPDUs, an im-
plementation of OSI TP4 may withhold sending an AK
TPDU for some time (maximum acknowledgment
holdback time) after receipt of a DT TPDU. This holdback
time must be conveyed to the remote transport entity at
connection establishment time.

Transporl
Service
lnterface

Transport
Service
Interface

_

"onnuq_gegrresf-

1 'connecLcontil$

Connect
Request

IPDU

Connect
conlirm

(CC) TPDU
T Connect Response

a",,no*,"d]-dDiii

DT TPDUS (Data Transport Protocol Data Units)

Itt n

{
Sequence Space

Size (31 Bits)

0, i, m, n = Sequence Numbers
m = i * 1 Mod (Sequence Space Size)

38 newrerr-pecKARD JoURNAL FEBRUARY 1990

Fig.3. fransport data service unit
(TSDU) format and the DT TPDU
numbering scheme.

t-t---fl
to t |)

TSDU (Transport Service Data Unit)

r It is used to convey TP4 flow control information, as
described in the next section.

TP4 Flow Control
OSI TP4 flow control, like many other schemes, is man-

aged by the receiver. TP4 uses a credit scheme. The receiver
sends an indication through the AK TPDU of how many
DT TPDUs it is prepared to receive. More specifically, an
AK TPDU carries the sequence number of the next expected
DT TPDU (this is called the LWE or lower window edge)
and the credit window (CDT), which is the number of DT
TPDUs that the peer transport entity may send on this
connection. The sequence number of the first DT TPDU
that cannot be sent, called the upper window edge (UWE),
is then the lower window edge plus the credit window
modulo the sequence space size (see Fig. 5). As an example,
say that the receiving transport entity has received DT
TPDUs up through sequence number 5. Then the L\AIE or
next expected DT TPDU number is 6. If the receiver trans-
mits an AK TPDU with a CDT of 10 and an LWE of 6, then
the transmitter (receiver of the AK TPDU) has permission
to transmit 10 DT TPDUs numbered 6 through 15. The
transmitter is free to retransmit any DT TPDU that has not
been acknowledged and for which it has credit. A DT TPDU
is acknowledged when an AK TPDU is received whose
LWE is greaterthanthe sequence number of the DT TPDU.

Credit Reduction
OSI TP4 allows the receiver to reduce the credit window

as well as take back credit for DT TPDUs that it has not
yet acknowledged. The LWE cannot be reduced, however,
since it represents the next expected DT TPDU sequence
number and acknowledges receipt of all DT TPDUs of lower
number. Another way of saying this is that the UWE need
not move forward with each successive AK TPDU, and in
fact it may move backwards as long as it isn't less than the
LWE. As will be discussed later, the OSI Express card's
TP4 takes advantage of this feature to provide memory
congestion control by closing the credit window (AK TPDU
with CDT of zeroJ under certain circumstances.

rYE uwE

Iilllllllllllll)*''"*
f--cor-l

UWE = Upper Window Edge
(Sequence Number of the First DT TPDU that Cannot Be Sent)

LWE = Lower Window Edge
(Sequence Number-Carried by an AK TPDU-of the Next Expected
DT TPDU)

CDT = Gredit Window or Window Size
(Number ol DT TPDUs a Receiver Can Handle)

Fig.5. Paramelers associated with a buffer of DT TPDUS.

OSI Express Card TP4

The OSI Express card's implementation of TP4 (hereafter
called the Express TP4) flow control and network conges-
tion control and avoidance policies use many of the basic
protocol mechanisms described above.

Flow Control
In Express TP4 the maximum receive credit window size

(W) is a user-settable parameter. A similar parameter (Q)
is used to provide an upper limit on the number of DT
TPDUs a given connection is allowed to retain awaiting
acknowledgment. The Express TP4 dynamically changes
the window size and queuing limit based on the state of
congestion, so W and Q are treated as upper limits. An
application can set values for W and Q for a particular
connection during connection establishment. A set of val-
ues may also be associated with a particular TSAP (trans-
port service access point) selector, so that applications can
select from different transport service profiles. In lieu of a
connection using one of the two methods just described,
configured default values are used.

There is no real notion of flow control in the outbound
direction, although TPDU transmissions are paced during
times of congestion. The Express TP4 continues to send
TPDUs until it has used all the credit that it was allocated
by the peer entity, or it has Q TPDUs in its retransmission
queue awaiting acknowledgment, whichever comes first.

Ignoring any congestion control mechanisms for the mo-
ment, inbound flow control is also fairly simple. When the
Express TP4 sends an AK TPDU, its goal is to grant a full
window's worth of credit. The CDT field of the AK TPDU
is set to W, and the L\ME field is set to the sequence number
of the last in-sequence DT TPDU received plus one (i.e.,
the next expected DT TPDU). The key to the efficient oper-

Waiting for AK TPDU

Fig. 6. Slmp/e flow control policy

Receiver Sender

FEBRUARy 1990 HEWLETT-pAorlno .touRnnu 39

ation of the flow control policy is the timing of the AK
TPDU transmissions.

A simple flow control policy (see Fig. 6) could be to send
an AK TPDU granting a full credit window when the last
in-sequence DT TPDU of the current credit window has
been received. This policy would degrade the potential
throughput of the connection, however, because it neglects
the propagation delays and processing times of the DT
TPDUs and AK TPDUs. After transmitting the last DT TPDU
of the current credit window, the sender is idle until the
AK TPDU is received and processed. After sending the AK
TPDU, the receiver is idle until the first DT TPDU of the
new credit window has propagated across the network.
These delays could be lengthy depending on the speed of
the underlying transmission equipment and on the relative
speeds of the sending and receiving end systems.

A more efficient flow control policy, like that im-
plemented in the Express TP4, sends credit updates such
that the slowest part of the transmission pipeline (sending
entity, receiving entity, or network subsystem) is not idle
as long as there is data to be transmitted. This is done by
sending an AK TPDU granting a full window's worth of
credit before all of the DT TPDUs of the current credit
window have been received. The point in the current credit
window at which the credit-giving AK TPDU is sent is
called the credit acknowledgment point (CAP). Thus the
CAP is the sequence number of a DT TPDU in the current
credit window whose in-sequence receipt will generate the
transmission of an AK TPDU. The AK TPDU's LlvlIE will
be the sequence number of the DT TPDU causing the gen-
eration of the AK TPDU and the CDT field of the AK TPDU
will contain the value of W. The CAP is calculated each
time an AK TPDU is sent, and is just the sum of the credit
acknowledgment interval (CAI) and the current LWE, CAI
represents the number of data packets received before an
AK TPDU is sent.

Receiver

Dr tcAPl

Example
Consider a hypothetical connection where two end sys-

tems are connected through an intermediate system via
two 9600-baud full-duplex serial links. Fig. 7 shows the
progression of DT TPDUs and the flow control pacing AK
TPDUs across the links of this connection. At time T0. end
system L has received the DT TPDU whose sequence
number is the CAP. End system 1 then places an AK TPDU
in the transmission queue of link A', thereby granting a
new credit window. Meanwhile links A and B are busy
processing DT TPDUs numbered CAP + 1 and CAP + 2 re-
spectively. At time T1, the AK TPDU has made it to the
link B' transmission queue and the DT TPDUs have ad-
vanced one hop, allowing DT TPDU number CAP+ 3 to be
inserted in the link B transmission queue. Finally, at time
T2, the AK TPDU has made it to end system 2, and again
the DT TPDUs have advanced one hop, allowing DT TPDU
number CAP + 4 to be inserted in the link B transmission
queue. Note that for simplicity, it is assumed that the prop-
agation delay of a DT TPDU across a link is equal to that
of an AK TPDU. In reality, DT TPDUs are larger than AK
TPDUs and would take longer to propagate.

For this example, the minimal CAI needed to keep the
links busy is four, and the minimal window sizeW is eight.
Thus the AK TPDU would carry a CDT of eight, so that
end system 2 has credit to send DT TPDUs numbered
CAP + 5 through CAP + B at the time it receives the AK
TPDU (time T2). DT TPDU number CAP++ would trigger
end system 1 to send another credit-granting AK. The CAI
should not be greater than W - 4 for this example, or end
system 1 will notice an abnormal delay in the packet train
because end system 2 does not have enough credit to keep
the links busy while the AK TPDU is in transit. Any CAI
less than W-4 would avoid the delay problem, but the
increase in AK TPDU traffic tends to decrease the amount
of CPU and link bandwidth that can be used for data trans-

Sender

DTICAP + 1I

DT [CAP + 2]
AK [CAP, CDTI

#E
I tr"ns.ission Queue I----------+

Fag. 7. Hypothetical connection
of two end systems through an in-
termediate system via two 9600-
baud full-duplex serial links.

40 HEWLETT-PACKARD JoURNAL FEBBUAFY 1990

mission. The optimal CAI for this example would be W-4

since that avoids the credit delay and minimizes the

number of AK TPDUs. The graph in Fig. 9 on page 56

shows the effect on throughput of different values for W

and different CAIs (packets per AK TPDU) for each of the

window sizes. This graph was created from a simulation

of the Express TP4 implementation running a connection

between two end systems connected to a single LAN seg-

ment. This simulation data and analysis of real Express

TP4 data have shown that a maximum CAI of W/2 yields

the best performance with the least amount of algorithmic

complexity.

Optimal Credit Window
In the Express TP+, the CAI initially starts at half the

credit window size (W/2), but can be reduced and sub-

sequently increased dynamically to reach and maintain the

optimal interval during the Iife of the connection. The op-

timal value, as shown in the above example, is large enough

to ensure that the sender receives the AK TPDU granting

a new credit window before it finishes transmitting at least

the last DT TPDU of the current window, but not larger

than the number of DT TPDUs the sender is willing to
queue on its retransmit queue awaiting acknowledgment
(note that this scheme relies on the setting of sufficiently

large values for Q and W such that the optimal CAI can be

reached). If the sending transport entity does not allow W2
DT TPDUs to be queued awaiting acknowledgment, then

as a receiver, the Express TP4 will decrease the CAI to

avoid waiting for the CAP DT TPDU that would never

come. This situation is detected with the maximum

acknowledgment holdback timer. Since any AK TPDU that
is sent cancels the acknowledgment holdback timer, expi-
ration of the holdback timer indicates that the sender may

not have sent the CAP DT TPDU. When the timer expires,

the CAI is decreased to half the number of DT TPDUs
received since the last credit update. This is done to pre-

serve the pipelining scheme, since it has been shown that
it is better to send AK TPDUs slightly more often than to
allow the pipeline to dry up. The amount of credit offered

to the receiver is not shrunk (unless congestion is detected),
so if the sender devotes more resources to the connection,
it can take advantage of the larger window size. The CAP
will increase linearly as long as the sender is able to send
up to the CAP DT TPDU before the acknowledgment
holdback timer expires. The linear increase allows the Ex-
press TP4 to probe the sender's transmit capability, and
has proved fair ly effect ive.

A more effective mechanism for matching the receiver's
AK TPDU rate to the sender's needs has reached draft pro-

posal status as an enhancement to OSI TP4. That mecha-
nism allows the sending transport entity to request an

acknowledgment from the receiving transport entity.

Congestion Control and Avoidance

Several network congestion control and avoidance al-
gorithms are used in the Express TP4. All of these al-
gorithms have been described and rationalized in reference
3. This section provides a basic description of each al-
gorithm and how they were effectively incorporated in the

Express TP4 implementation. There is also a description
of how these algorithms are used together with the dynamic
credit window and retransmit queue sizing algorithms to
provide congestion control of card resources and network

resources.

Slow SIaTUCUTE Congestion Avoidance
Two very similar congestion avoidance schemes have

been described by lacobsen3 and fain.4 The fundamental
observation of these two algorithms is that the flow on a
transport connection should obey a "conservation of pack-

ets" principle. If a network is running in equilibrium, then
a new packet isn't put onto the network until an old one

leaves. Congestion and ultimately packet loss occur as soon
as this principle is violated. In practice, whenever a new
connection is started or an existing connection is restarted
after an idle period, new packets are injected into the net-
work before an old packet has exited. To minimize the
destabilizing effects of these new packet injections, the
CUTE* and slow start schemes require the sender to start
from one packet and linearly increase the number of pack-

ets sent per round-trip time, The basic algorithm is as fol-
lows:
I When starting or restarting after a packet loss or an idle

period, set a variable congestion window to one.
r When sending DT TPDUs, send the minimum of the

congestion window or the receiver's advertised credit
window size.

! On receipt of an AK TPDU acknowledging outstanding
DT TPDUs, increase the congestion window by one up
to some maximum (the minimum of Q or the receiver's
advertised credit window size).
Note that this algorithm also is employed when the re-

transmit or retransmission timer expires. The CUTE
scheme proposes that a retransmission time-out be used as
an indication of packet loss because of congestion. Jacob-
sens also argues, with some confidence, that if a good
round-trip-time estimator is used in setting the retransmit
timer, a time-out indicates a lost packet and not a broken
timer (assuming that a delayed packet is equated with a
lost packet). For a LAN environment, packets are dropped
because of congestion.

The Express TP4 uses the slow start algorithm (if config-
ured to do so) when a connection is first established, upon
expiration of the retransmission timer, and after an idle
period on an existing connection. An idle period is detected
when certain number of keep-alive AK TPDU's have been
sent or received. The slow start and CUTE schemes limit
their description to sender functions. The Express TP4 pro-
vides the slow start function on the receive side as well,
to protect both the network and the OSI Express card from
a sender that does not use the slow start scheme. The re-
ceiver slow start algorithm is nearly identical to the sen-
der's and works as follows:
I When starting or restarting after an idle period, set a

variable congestion window to one.
r When sending an AK TPDU, offer a credit window size

equal to the congestion window to the sender.
I On receipt of the CAP DT TPDU, increase the congestion

window by one up to some maximum W as described

'CUTE stands for Congestion control Using fime-outs at the End-to-end layer.

FEBRUARy I990 HEWLETT-pAcrnRo..rouRner 41

above.

Round-Trip-Time Variance Estimation
Since the retransmit timer is used to provide congestion

notification, it must be sensitive to abnormal packet delay
as well as packet loss. To do this, it must maintain an
accurate measurement of the round-trip time (RTT). The
round-trip time is defined as the time it takes for a packet

to propagate across the network and its acknowledgment
to propagate back. Most transport implementations use an
averaging algorithm to keep an ongoing estimation of the
round-trip time using measurements taken for each re-
ceived acknowledgment.

The Express TP4 uses RTT mean and variance estimation
algorithms3 to derive its retransmission timer value. The
basic estimator equations in a C-language-like notation are:

where:

Er r : M-A
A : A + (E r r > > G a i n)
D : D + ((lErr l - D)>>Gain)

M : current RTT measurement
A : average estimation for RTT, or a

prediction of the next measurement
Err : errorintheprevious prediction

of M which may be treated as a variance
Gain : aweightingfactor

D : estimatedmeandeviation
)) : C notation for the logical shift right

operation (a division of the left operand
by 2 to the power of the right operand).

The retransmission timer is then calculated as;

r e t r a n s t i m e : A + 2 D .

The addition of the deviation estimator has provided a
more reactive retransmission timer while still damping the
somewhat spurious fluctuations in the round-trip time.

Exponential Retransmit Timer
If it can be believed that a retransmit timer expiration is

a signal of network congestion, then it should be obvious
that the retransmission time should be increased when the
timer expires to avoid further unnecessary retransmissions.
If the network is congested, then the timer most likely
expired because the round-trip time has increased appre-
ciably (a packet loss could be viewed as an infinite in-
crease). The question is how the retransmissions should
be spaced. An exponential timer back-off seems to be good
enough to provide stability in the face of congestion, al-
though in theory even an exponential back-off won't
guarantee stability.5

The Express TP4 uses an exponential back-off with
clamping. Clamping means that the backed-off retransmit
time is used as the new round-trip time estimate, and thus
directly effects the retransmit time for subsequent DT
TPDUs. The exponential back-off equation is as follows:

retrans_time : retrans time x 2n

42 HEWLETT-PAoKARD JoURNAL FEBFUAFY 1990

where n is the number of times the packet has been trans-
mitted.

For a given DT TPDU, the first time the retransmission
timer expires the retransmission time is doubled. The sec-
ond time it expires, the doubled retransmission time is
quadrupled, and so on.

Dynamic Window and Retransmit Queue Sizing
The slow start described earlier provides congestion

avoidance when used at connection start-up and restart
after idle. It provides congestion control when triggered by
a retransmission. The problem with it is that a slow start
only reduces a connection's resource demands for a short
while. It takes time RTTlogrW, where RTT is the round-trip
time and W is the credit window size, for the window
increase to reach W. When a window size reaches W again,
congestion will most likely recur if it doesn't still exist,
Something needs to be done to control a connection's con-
tribution to the load on the network for the long run.

The transport credit window size is the most appropriate
control point, since the size of the offered credit window
directly effects the load on the network. Increasing the
window size increases the load on the network. and de-
creasing the window size decreases the load. A simple rule
is that to avoid congestion, the sum of all the window sizes
(Wt) of the connections in the network must be less than
the network capacity. If the network becomes congested,
then having each connection reduce its W (while also em-
ploying the slow start algorithm to alleviate the congestion)
should bring the network back into equilibrium. Since there
is no notification by the network when a connection is
using less than its fair share of the network resources, a
connection should increase its W in the absence of conges-
tion notification to find its limit. For example, a connection
could have been sharing a path with someone else and
converged to a window that gave each connection half the
available bandwidth. If the other connection shuts down,
the released bandwidth will be wasted unless the remain-
ing connection increases its window size.

It is argued that a multiplicative decrease of the window
size is best when the feedback selector signals congestion,
while an additive increase of the window size is best in
the absence of congestion.3'6 Network load grows non-
linearly at the onset of congestion, so a multiplicative de-
crease is about the least that can be done to help the network
reach equilibrium again. A multiplicative decrease also
affects connections with large window sizes more than
those with small window sizes, so it penalizes connections
fairly. An additive increase slowly probes the capacity of
the network and lessens the chance of overestimating the
available bandwidth. Overestimation could result in fre-
quent congestion oscillations.

Like the slow start algorithm, the Express TP4 uses mul-
tiplicative decrease and additive increase by adjusting W
on a connection's receive side and by adjusting Q on a
connection's send side. This al lows us to control the injec-
tion of packets into the network and control the memory
utilization of each connection on the OSI Express card.
The amount of credit given controls the amount of buffer
space needed in the network and on the card. The size of

Q also controls the amount of buffer space needed on the

card, because TSDUs are not sent to the card from the host
computer unless the connection has credit to send them
or there are less than Q TPDUs already queued awaiting
acknowledgment. The Express TP4 uses the following equa-
tions to implement multiplicative decrease and additive
increase.

Upon notification of congestion (multiplicative de-
crease):

after an idle period injects new packets into the system

without waiting for old packets to leave the system. AIso,

since there can be many connections, it is likely that the

sum of the connections'window sizes and other resource

demands could become greater than what the card can

actually supply.
A shared resource scheme also brings the problem of

ensuring that each connection can get its fair share of the

resources. Connections will operate with different window

sizes, packet sizes, and consumption and production rates.

This leads to many different patterns and quantities of

resource use. As many connections start competing for

scarce resources, the congestion control scheme must be

able to determine which connections are and which con-

nections are not contributing to the shortage.
The problem of congestion and fairness was addressed

by modeling the card as a simple feedback control system.

The system model used consists of processes (connections)

that take input in the form of user data, buffers, CPU re-

sources, and control signals, and produce output in the

form of protocol data units. To guarantee the success of

the system as a whole, each process must be successful.

Each process reports its success by providing feedback sig-

nals to a central control decision process. The control de-

cision process is responsible for processing these feedback

signals, determining how well the system is performing

and providing control information to the connection pro-

cesses so that they will adjust their use of buffers and CPU

resources such that system performance can be maximized.

Control System
Certain measures are needed to determine the load on

the card so that congestion can be detected, controlled, and
hopefully avoided. When the card is lightly loaded, fairness
is not an issue. As resources become scarce, however, some
way is needed to measure each connection's resource use

so that fairness can be determined and control applied to
reduce congestion.

Two types of accounting structures are used on the OSI
Express card to facilitate measurement: accounts and credit
cards. Since outbound packets are already associated with
a connection as they are sent from the host to the card,

each connection uses its own account structure to maintain
its outbound resource use information. All protocol layers
involved in a particular connection charge their outbound
operations directly to the connection's outbound account.
For inbound traffic, when a packet is received from the
LAN, the first three protocol layers do not know which

upper-layer connection the packet is for. Therefore, a single
inbound account is used for all inbound resource use infor-
mation for the first three protocol layers, and some com-
bined resource use information for upper-layer connec-
tions. This provides some level of accountability for in-
bound resource use at the lower layers such that compari-

sons can be made to overall outbound resoutce use. Since
a single inbound account exists for all connections, credit
cards are used by the upper four layers (transport and up)
to charge their inbound operations to specific connections.
Thus each connection has an outbound account and a credit
card {or the inbound account.

The protocol modules and CONE utilities are responsible

W' : W'12
q' : Q'12.

Upon absence of congestion (addit ive increase):

W ' : W ' + W ' 1 4
a ' : a ' + Q ' t 4 .

W' and Q' are the actual values used by the connection

and W and Q are upper limits for W' and Q' respectively.

The window and queue size adjustments are used with

the retransmit timer congestion notification in the follow-

ing manner:
I Expiration of the retransmit timer signals network con-

gestion and Q' is decreased.
I The slow start algorithm is used to clock data packets

out until the congestion window equals Q'.
t As long as no other notifications of congestion occur, Q'

is increased each time an AK TPDU is received, up to a

maximum of Q.

OSI Express Congestion Control

One of the main design goals of the OSI Express card

was to support a large number of connections. To achieve

this goal, the memory management scheme had to be as

efficient as possible since memory (for data structures and

data buffers) is the limiting factor in supporting many con-

nections. OSI Express memory management is provided

by the CONE memory buffer manager (see page 27 for more

about CONE memory buffer manager).

Initially, the memory buffer manager was designed such

that each connection's packet buffers were preallocated. A

connection was guaranteed that the buffers it needed would

be available on demand. This scheme provided good per-

formance for each connection when there were many active
connections, but it would not support enough active con-

nections. The connections goal had to be met, so the mem-

ory buffer manager was redesigned such that all connec-
tions share the buffer pool. Theoretically,there can be more

connections active than there are data buffers, so this

scheme maximizes the number of supportable connections
at the cost of individual connection performance as the

ratio of data buffers to the number of connections ap-
proaches one.

The Problem and The Solution
With a shared buffer scheme comes the possibility of

congestion. (Actually, even without a shared buffer
scheme, other resources such as CPU and queuing capacity
are typically shared, so congestion is not a problem specific
to statistical buffering.) Since no resources are reserved for
each connection, congestion on the card arises from the
same situations as congestion in the network. A new con-
nection coming alive or an existing connection restarting

(1)
(2)

(3)
t4)

FEBRUARy r 990 HEWLETT-PAcrnno louRul 43

for updating the statistics (i.e., charging the operations)
that are used to measure resource use. These statistics in-
clude various system and connection queue depths, CPU
use, throughput, and time-averaged memory utilization.
When summed over all of the connections, these statistics
are used along with other signals to determine the degree
of resource shortage or congestion on the card. The indi-
vidual connection values indicate which connections are
contributing the most to the congestion (and should be
punished) and which connections are not using their fair
share of resources (and should be allowed to do so).

Flow Control Daemon
The control decision and feedback filtering function is

implemented in a CONE daemon process aptly named the
flow control daemon. Using a daemon allows the overhead
for flow control to be averaged over a number of packets.
The daemon periodically looks at the global resource statis-
tics and then sets a target for each of the resources for each
connection. The target level is not just the total number of,
say, buffers divided by the number of connections. Targets
are based on the average use adjusted up or down based
on the scarcity of various resources. This allows more flex-
ibility of system configurations since one installation or
mix of connections may perform better with different
maximum queue depths than another. It is also the simplest
way to set targets for things like throughput since total
throughput is not a constant or a linear function of the
number of connections.

Control signals are generated by the flow control daemon
as simple indications of whether a connection should in-
crease, decrease, or leave as is its level of resource use.
The daemon determines the direction by comparing the
connection's level of use with the current target levels.
There is a separate direction indication for inbound and
outbound resource use.

The fairness function falls out very simply from this
decision and control scheme. Any connection that is using
more than its fair share of a resource will have a level of
use greater than the average and thus greater than the target
when that resource is scarce. In other words, the "fair
share" is the target.

The control signals are generated when a connection
queries the daemon. The most likely point for querying the
daemon is when a connection is about to make a flow
control decision. That decision point is, of course, in the
TP4 layer of the OSI Express card.

Effects of the Daemon
The effects of flow control notifications to a connection

regarding decreasing or increasing resource use vary ac-
cording to whether the direction of traffic is inbound or
outbound.
Outbound, The Express TP4 queries the flow control
daemon for outbound congestion/fairness notification
when it receives an AK TPDU. It is at this point that DT
TPDUs are released from the retransmission queue, and it
can be decided if more or fewer DT TPDUs can be queued
until the next AK TPDU is received.

If the connection is using more than its fair share of
outbound resources (because of congestion or just over-

44 HEWLETT-pAcKARD JoURNAL FEBRUABY 1990

zealousness), the daemon will return a decrease notifica-
tion. A decrease notification causes the Express TP4 to
reduce the connection's retransmit queue size (Q') using
equation 2. The slow start algorithm is then used to clock
DT TPDUs out until the congestion window equals Q'.

If Q' is equal to one when a decrease is signaled, the
Express TP4 goes into DT TPDU send delay mode. In this
mode, transmission of successive DT TPDUs is spaced by
a minimum delay (D) to produce an interpacket gap that
will slow down the connection's demand for resources. If
further decrease signals are received in delay mode, the
minimum delay is increased using D : D x 2.

If the connection is using less than its fair share of out-
bound resources, the daemon will return an increase notifi-
cation. An increase notification causes the Express TP4 to
increase the connection's retransmit queue size (Q') up to
a maximum of Q, using the additive increase equation. If
an increase signal is received in delay mode, the minimum
delay is decreased using D : D - Dla.
Inbound. The Express TP4 queries the flow control daemon
for inbound congestion/fairness notification when it sends
an AK TPDU. At this point the decision needs to be made
whether more or fewer DT TPDUs should be allowed in
the pipeline until the next AK TPDU is sent. If the connec-
tion is using more than its fair share of inbound resources,
the daemon will return a decrease notification. A decrease
notification causes the Express TP4 to reduce the connec-
tion's receive window size (W') using equation 1. The slow
start algorithm is then used to clock AK TPDUs out with
credit window (CDT) values increasing from one to W'.

If W' is equal to one when a decrease is signaled, the
Express TP4 goes into credit delay mode. In this mode,
transmission of AK TPDUs containing a CDT of one are
spaced by a minimum delay to produce an interpacket gap
between incoming DT TPDUs that will slow down the con-
nection's demand for resources. If further decrease signals
are received in delay mode, the minimum delay is in-
c r e a s e d u s i n g D : D x 2 .

If the connection is using less than its fair share of in-
bound resources, the daemon will return an increase notifi-
cation. An increase notification causes the Express TP4 to
increase the connection's credit window size (W') up to a
maximum of W, using equation 3. If an increase signal is
received in delay mode, the minimum delay is decreased
u s i n g D : D - D l .

Severe Congestion Notification
The flow control daemon also provides an emergency

notification to Express TP4 in cases where transient short-
ages of memory are severe enough to jeopardize the exis-
tence of connections. Because the OSI Express card uses
statistical buffering, there is a possibility that a large burst
of outbound data could queue up in the Express TP4 re-
transmission queues, while inbound data is flowing in and
getting queued because the host computer is not reading
data from the card. If the situation is such that buffers may
not be available to receive or send AK TPDUs, the daemon
will give an emergency notification to the Express TP4.

Upon receipt of this notification, the Express TP4 sends
an AK TPDU with a CDT of zero, closing the credit window.
Thus DT TPDUs received that are outside the new credit

window are thrown away so as to avoid memory deadlock.
The Express TP4 also decreases the credit window W' and

the retransmit queue size Q' using equations 1 and 2. The

slow start algorithm is used to get the inbound and out-

bound data traff ic f lowing again.

Acknowledgments
A special thanks to Ballard Bare who part icipated in the

design and development efforts for the OSI Express TP4
implementation, and to Mike Wenzel who contr ibuted to
the design efforts.

References
1. J.C. Majithia, et al., "Experiments in Congestion Control," Pro-

ceedings of the Internotionol Symposium on FIow Control in Com-
puter Networks, Versailles, France, February 1979.

2. K. K. Ramakrishnan and Raj Jain, Congestion Avoidonce in

Computer Networks with o Connectionless Network Layer. Part

II: An Explicit Binory Feedbock Scheme, Digital Equipment Cor-
poration, Technical Report #TR-508, August 1987.

3. V. facobsen, "Congestion Avoidance and Control," Computer

Review: Communicotions Architectures ond Protocols fSIGCOMM
'88), Vol . 18, no.4, August 1988.

4. Rai Jain, "A Timeout-Based Congestion Control Scheme for

Window Flow-Controlled Networks," IEEE lournol on Selected

Areos in Communicot ions, Vol . SAC-4, no. 7, October 1986.

5. D. I. Aldous, "Ultimate Instability of Exponential Back-off for

Acknowledgment Based Transmission Control of Random Access

Communication Channels," IEEE Tronsoctions on Informotion

Theory, Vol . IT-33, no. 3, March 1987.

6. K. K. Ramakrishnan and Rai Jain, Congestion Avoidonce in

Computer Networks with o Connection.less Network Loyer, Digital

Equipment Corporation, Technical Report #TR-506, August 1987.

Data Link Layer Design and Testing for the
OSI Express Gard
The modules in the data link layer occupy the bottom of the
OSI Reference Model. Therefore, it was imperative that they
be f inished f irst and thattheir reliability be assure d bef ore
use by the upper layers of the OS/ sfack.

by Judith A. Smith and Bill Thomas

HE DATA LINK LAYER is the second layer in the
OSI Reference Model. Its function is to provide ac-
cess to the LAN interface for the OSI network layer

(layer 3), and transmitting and receiving of data packets to
or from the physical layer (layer 1). This article describes
the data Iink layer, particularly the OSI Express card's im-
plementation of this protocol layer. The box on page 49
provides a brief description of the OSI network layer.

The data link layer consists of two sublayers: the L\C
(logical link control) sublayer and the MAC (media access
control) sublayer (see Fig. 1). The LLC sublayer provides
a hardware independent interface to the upper-layer pro-
tocol. The LLC used for the OSI Express card implementa-
tion is specified in ANSI/IEEE standard 802.2. The OSI
Express card uses the Type 1 LLC protocol described within
this specification. Type 1 LLCs exchange PDUs (protocol
data units) between themselves without the establishment
of a data link connection. This is also called connectionless
network protocol. The MAC sublayer controls access to the
shared physical signaling and medium technologies (e.g.,

coaxial cable, twisted pair, fiber optic cables, and even
radio signals). The MAC protocol used by the OSI Express
card implementation is specified in IEEE standard 802.4.
Besides requiring that the OSI Express card implementa-
tion conform closely to the IEEE standards, the goals that
guided our design included:
I Hiding the upper LLC interface details from the data link

layer user (network layer).
r Making the LLC support multiple MAC sublayers.
r Making the lower LLC interface simple and flexible

enough to promote testability and ease of integration.
r Providing a loopback mechanism in the LLC.
I Creating and porting the MAC code to the OSI Express

card before all other protocol layers.
I Designing the MAC code and MAC test environment so

that some portions are leverageable to other MAC im-
plementations.
Since the data link layer module had to be the first pro-

tocol module completed, another goal was to ensure that
the design and development process produced simple and

FEBRUARy 1990 HEWLETT-pAcKABD JoURNAL 45

reliable code.

The Data Link Layer and CONE
The data link layer uses the facilities provided by CONE

(common OSI networking environment) to provide services
to the protocol layer above it and to communicate with the
protocol layer below it. These facilities include data struc-
tures for service access points (SAPs), interfaces to the
protocol layer routines, and the path data structure which
represents an individual connection between applications
on different machines. CONE facilities and SAPs are de-
scribed in detail in the article on page 18.

The protocol layer above the data link layer is called the
data link layer user. This is the network layer. Since the
LLC is the top layer of the data link layer, the network
layer is also the LLC user. Similarly the MAC user is the
LLC. A SAP is an addressable point at which protocol
services are provided for a layer user. SAPs are identified
by address information found in the headers (protocol
headersJ of data packets aniving at each layer. Forthe LLC
layer a SAP address is called an LSAP. Packets arriving at the
LLC layer usually have two addresses. One indicates where
the packet came from (source) and the other indicates the
packet's destination. The from address is called the source
service access point, or SSAP, and the destination address
is called the destination service access point, or DSAP.

CONE provides three data structures for all the protocol
layers that enable them to communicate with each other.
The first is the protocol entry data structure, which contains
pointers to all the procedures required by a particular pro-
tocol layer. For example the following procedures are part
of the data link layer protocol and are used by the network
Iayer to command the data link layer to perform certain
actions.
I DLAdd_SAP. Set up an LSAP.
r Dlsend-Down. Send a data packet.
I DlControl-Down. Send an XID or TEST command packet.
I DL-StarLDown. Set up a path between the data layer and

its user.

r DLDelete_SAP. Remove an LSAP.
I DlStop_Down. Remove a path.

Pointers to these procedures are set in the CONE protocol
data structure when the LLC initialization procedure is
called. Also at initialization, an LLC SAP data structure is
set up so that the data link layer can find the network layer.

When a connection is established with a remote applica-
tion, CONE creates a data structure called a path. A path
represents the intramachine route taken through the pro-
tocol layers by packets on a given connection from the
application to the LAN interface. It consists of an ordered
list of data structures that contain, among other things,
pointers to the SAP entries of the protocol layers involved
in the conversation between the two applications. Fig. 7
on page 23 shows the CONE data structures.

Logical Link Control Sublayer
The LLC sublayer on the OSI Express card performs two

kinds of functions. It sends and receives packets for the
users and sends and responds to XID (exchange identifica-
tionJ and TEST commands. The XtD command is used to
describe the capabilities of the LLC sublayer on one
machine to the LLC sublayer on another machine. The XtD
command is sent as a single packet containing the DSAP
and SSAP addresses, a control field set to the XtD command.
and the XID information which describes the functions the
LLC supports. The LLC on the receiving machine sends a
response packet to the sender describing itself. The receipt
of the XID command is not reported to the LLC user because
it is handled internally by the LLC sublayer. The TEST
command is used to test the integrity of the communication
link between the LLC sublayers on two communicating
machines. Therefore, the TEST command also causes the
receiving LLC to send a response. The response data from
the receiving machine is expected to be the same data that
is sent in the command packet. Like the XID command, the
TEST command is not sent to the LLC user. The kinds of
DSAP addresses in the XtD and tesT commands include
individual, group, and global addresses. The individual

*- r,"-{

Fig, 1. Overview of the data link
layer and lts sub/ayers.

46 HEWtErr-pAcKARD JoURNAL FEBRUARY 1990

X

End System End System

address is used when the response packet is to be sent for
one particular LSAP address. The group address is used
when the response is to be sent for a group of LLC users.
The global address is used when the response is to be sent
for all of the active LLC SAP addresses. A TEST packet sent
to the global address should result in responses from ad-
dress zero and from each of the other active SAPs. One of
the individual addresses, address 0, designates the sending
LLC itself and is always active. Therefore, an XID or TEST
command sent to this address will always generate a re-
sponse.

Media Access Control Sublayer
The MAC sublayer is responsible for sending and receiv-

ing data from the media. To fulfill this responsibility the
MAC sublayer performs:
I Conversion of outbound data into a form acceptable to

the hardware that sends the packet onto the media. It
performs the reverse transformation for inbound packets

I Checking to ensure that received packets have a MAC
address that is acceptable to the OSI Express card and
that there are no detectable transmission errors

r Managing how many times retransmission of a packet
should be attempted if there are transmission errors.
The MAC sublayer maintains a SAP table with one entry

for each active MAC address. Two addresses are always
active: the local individual MAC address and the broadcast
MAC address. The individual MAC address is stored in
nonvolatile memory on the card and is unique for every
individual card made. The assignment of this address is
managed on a worldwide basis. The broadcast address is
one that all MAC sublayers are required to accept. Addi-
tional addresses, such as multicast addresses, may also be
activated. These multicast addresses are used bv the net-
work layer.

LLC and MAC lnterface
The procedures contained in the LLC and MAC sublayers

are designed to conform closely to IEEE standards 802.3

and 802.4 and to maximize the independence between the
two sublayers. The procedures provided by the MAC sub-
layer include:
r Send-Packet. This procedure is used by the LLC sublayer

to request the MAC sublayer to send a data packet out
onto the media.

r Activate-MAo-Addr and Oeactivate-MAc-Addr. These proce-
dures are used as their name implies, to activate and
deactivate MAC addresses. When a MAC address is ac-
tivated, an entry is made in the MAC SAP lookup table.
A MAC address may be activated more than once if sev-
eral LLC users (with different LSAPs) use the same MAC
address. The data structure containing the MAC SAP
has a reference counter that contains a count of the
number of times the address is activated by one of the
LLC users. When the MAC address is deactivated, the
count is reduced. but the MAC address itself is not deac-
tivated until the count is reduced to zero.

r CheclcMAO-Addr and Store-lndiv-MAC-Addr. These proce-
dures are used to provide independence between the
LLC and MAC sublayers.
The procedures provided by the LLC for the MAC sub-

layer include:
I CheclcPacket and Receive-Packet. These procedures are

used to send packets received from the media by the
MAC sublayer to the LLC sublayer, which in turn sends
them to the data link layer user. The Check-Packet proce-
dure was developed to improve performance. When the
MAC layer receives a packet from the media it is in a
format used by the hardware to interface to the media.
Therefore, the data must be converted to the format used
by the OSI protocol stack. This effort is wasted if there
is no data link layer user to accept the packet. Therefore,
before the MAC does the conversion. it calls the Checlc
Packet procedure to check that the packet's LLC header
is valid and that its destination address has an active
LSAP set up for it. The LLC then returns a pointer to
the LSAP to the MAC sublayer if and only if the packet
is acceptable. If a pointer is returned, the MAC sublayer

(a)

Fig.2. (a) Configuration data for
the network layer initialization.
(b) Data lields assoclated with
each address data set. (c) Ad-
dress llelds of local address set
sent down wlth DLAdd_SAP cal/.
(d) Address fields of local ad-
dress set after the MAC address
is rnserted-

Fi l led in F ie ld

lS = Intermediate System
ES = End System

i
FEBRUABY i 990 HEWLETT-pAcKAFD JoURNAL 47

does the conversion and then passes the packet and
pointer to the LLC sublayer using the Receive_Packet pro-
cedure.

r Return-SenlPacket. This procedure is used by the MAC
sublayer to return the data structure of the packet that
the MAC sublayer has sent onto the media. The LLC
sublayer will return the data structure to whatever pro-
tocol wants it back.

Design Decisions
The network layer and the LLC and MAC sublayers work

together successfully because of the decisions we made to
simplify the design and to minimize the amount of informa-
tion each layer needed to have about the other layer. One
of these decisions was that the network layer and the LLC
and MAC sublayers are to return no error messages about
whether or not a packet is successfully sent. This decision
stemmed from trying to decide how a layer user should
respond to an enor from lower layers, Since these errors
are characteristic of the particular lower layer in use, han-
dling these errors could result in a great deal of dependency
in an upper layer on what was going on in a lower layer,
and would change if the lower layer changed (e.g., if the
IEEE 802.4 MAC was replaced with IEEE 802.3).

After reviewing the functions each layer was required to
provide, we realized that the transport layer had the respon-
sibility for end-to-end communication and also that the
transport layer contains algorithms for ensuring the integ-
rity of the connection no matter how the packets are lost.
Some packets transmitted with no errors will fail to arrive
at their destination because of network errors on the media.

It was decided to allow the transport layer to detect the
loss of any packets and handle all error recovery. This
relieves the transport layer from having to check status
information from the lower levels on every packet.

One area we went to great length to simplify is address
handling. The individual MAC address is a good example.
The network layer needs, as part of its protocol, to know
which of three MAC addresses (two multicast addresses
and the individual address) a received packet has as its
destination address. One method is to pass the individual
MAC address to the network layer. This has the drawback
that the network layer would have to know the format of
the address and the value of the individual address. To
eliminate the need for the network layer to know this infor-
mation, LSAPs are set up for each set of LLC and MAC
addresses the network layer might use. Fig. 2a shows the
configuration data the network layer receives at initializa-
tion. The network parameters are used internally by the
network layer and each of the sets of address data is used
to add an LSAP for the network layer. Fig. 2b shows the
data items associated with each set of address data. The
network layer sets up an LSAP with the DL_Add_SAP proce-
dure, which is in the LLC sublayer. To get the MAC address
field initialized for the local address data. a call is made
to the DL-Add-SAP procedure with one of the parameters
pointing to the local address data shown in Fig. 2c. The
DL-Add-SAP procedure examines the address data fields and
if the field containing the flag for the local MAC address
is true, the LLC calls the MAC sublayer routine Store_lndiv_
MAC-Addr and passes to the routine a pointer to the place
in the address data where the MAC address is supposed

t

\:

48 uewlrn-pncKARD JoURNAL FEBRUARv t99o

Fig. 3. Loop-back flowchart.

The OSI Connectionless Network
Protocol

The network layer is the third layer of the OSI Reference Model.
It provides network service to the transport layer and uses the
data link service as provided by the data link layer. Two different
types of service are defined for the OSI network layer: the con-
nection-oriented network service using the protocol defined in
ISO 8208 (CCITT Recommendation X.25) and the connectionless
network service provided by the connectionless network protocol
(CLNP) defined in ISO 8473, The OSI Express card relies on a
LAN subnetwork technology, so it uses the connectionless net-
work layer protocol. The OSI Express card also uses the end-sys-
tem{o-intermediate-system routing exchange protocol defined
in ISO 9542 to discover the existence of other end systems or
the existence of one or more intermediate systems on the same
subnetwork (LAN segment). An end system (ES) is defined as
a system in which there is a transport enti ty in an instance of
communication. An intermediate system (lS) is a system that
provides the routing and relaying functions of the OSI network
layer. End systems rely on intermediate systems to deliver net-
work protocol data units (NPDUs) from the source ES to the
destination ES across mult iple subnetworks.

Service Provided by CLNP
The connectionless network service (CLNS) provides a data-

gram service to the transport layer. Each NPDU contains the
source and destination end system addresses, and is routed to
the destination as an autonomous unit (i .e., not associated with
any connection between the end systems). The CLNS may mis-
order, dupl icate, or lose packets. Therefore, i t is up to an upper-
layer protocol, such as the transport layer, to perform error check-
ing .

The connectionless network service provides only two service
primitives to the transport layer: an N-UN|TDATA request and an
N-UNITDATA indication. The transport layer ini t iates the transmis-
sion of a TPDU or TPDUs by issuing an N-UNITDATA request. The

transport layer receives TPDUs via the N-UN|TDATA indication.
The parameters of both CLNS primitives are the network source
address, the network destination address, the network quality of
service, and the network service user data.

The source address and the destination address parameters
are OSI network service access point (NSAP) addresses. An
NSAP has two parts: the network entity title part which uniquely
identi f ies the ES or lS within the global OSI environment, and the
selector part which identi f ies the network service user within the
ES.

Egto-ls Exchange Protocol
The ES{o-lS routing exchange protocol, which is specified in

ISO 9542, provides solutions to the following practical problems.
r How do end systems discover the existence and reachability

of intermediate systems that can route NPDUs to destinations
on subnetworks other than the ones to which the ES is directly
connected?

r How do end systems discover the existence and reachability
of other end systems on the same subnetwork?

I How do intermediate systems discover the existence and
reachability of end systems on each of the subnetworks to
which they are directly connected?

r How do end systems decide which intermediate system to
use to forward NPDUS to a particular destination when more
than one lS is accessible?

I The ES{o-lS protocol is connectionless and operates as a
protocol within the network layer, specifically in conjunction
with the CLNP, ISO 8473. The ES{o-lS PDUs are carried as
user data in data l ink PDUs just l ike ISO 8473 NPDUs. Certain
ES{o-lS protocol functions require that the subnetwork (i .e.,
data link service) supports broadcast, multicast, or other forms
of mult idestination addressing for n-way transmission.

to be. When this routine is finished the local address data
looks like Fig. 2d. The availability of the Store-tndiv-MAC_Addr
ensures that the LLC does not have to know what the MAC
address is or where it is stored. When control is returned
to the LLC sublayer, it uses the modified address data buffer
to add an LSAP just as if the MAC address had been
supplied when DL-Add-SAP was initially called.

The network layer does not have within its protocol the
concept of XtD and TEST commands or responses. Either
the network layer must detect and reject these packets or
the LLC must not send them to the LLC user. Some LLC
users do want to receive these packets. To prevent the
network layer from having to check the LLC control fields
of every packet, special flags were added to the LSAPs for
XID and TEST packets. When the LSAP is activated, the
network layer designates that the XtD and TEST flags be set
to prohibit the reception of these responses at this particu-
lar SAP. LLC users that do want to receive XtD and TEST
packets would not set these flags.

Loop-Back
Loop-back is the process by which the card is able to

receive or appear to receive something it has sent. Loop-

back is often used for testing, but it is also required for the
normal operation of the card. If two programs that are writ-
ten to communicate with each other over the netr,vork are
run on the same machine, loop-back is necessary for them
to communicate with each other. A data packet from either
of these programs must travel the entire protocol stack
because some of the layers of the network provide services
such as data transformations as well as transporting the
packet from one program to the other. Another reason for
traversing the entire stack is that the card cannot know
whether a packet being sent is also one that the card should
receive unless the entire address of the packet is evaluated.
The task of loop-back, that is, the process of generating a
receive packet from a packet being sent, is the responsibility
of the LLC sublayer in this implementation.

The network layer does not want all packets looped back
to itself. For instance, if all packets sent out with one of
the multicast addresses as the destination address were
Iooped back, the network layer would be burdened with
spurious packets and would have to check each packet's
network address to be sure it was not one it had sent. Since
one possible error in a network is for two network layers

FEBRUARy 1 990 HEWLETT-pAornno louRnal 49

to have the same network layer address, even the detection
of unwanted looped-back packets could be impossible,
since the MAC individual address, which would decide
the issue, is not available to the network layer. The solution
is to have a loop-back flag in the LSAP data structure. When
the loop-back flag is set, the LLC knows that packets sent
on a path using the LSAP should be looped back if the
remote address of the path is the one on which the card
receives packets.

The data flow of a loop-back packet is shown in Fig. 3.
The packet is sent from program A to program B. Program
A sends the packet down to the upper layers just as it
would send a packet to a program on another node. From
there it is sent to the transport layer and then the network
layer. The network layer sends the packet to the LLC using
path 1, which has its remote address set to the node of
program B. In this case since program B is on the same
node, the remote address is the one on which the local
node itself receives packets. The LLC sublayer sends the
packet to the MAC sublayer where it is sent out onto the
network. (Loop-back packets are also sent out onto the
network because the remote address can be one that other
nodes also receive.) The MAC returns the packet to the
LLC after it is sent. The LLC checks to see if the packet
is a loop-back packet. Since it is, the LLC starts the packet
up the stack via path 2, which has as its remote address
the local address of the original packet. The LSAP as-
sociated with path 2 has as its address the destination
address of the original packet. The network layer receives
this packet the same way it would if it came from another
node. The packet is then passed up the stack to program B.

Rather than do a full LLC and MAC address comparison
each time a packet is returned from the MAC sublayer, a
flag in the path is tested. This flag is set when the path is
set up, based on whether the LSAP associated with the
path allows loop-back and whether the remote address of
the path is one on which the node receives packets. This
flag must be updated each time an LSAP is added or de-
leted. Since LSAPs are usually added at initialization and
never deleted, the updating does not add any overhead to
the card's operation.

The checking of a path's remote address against address-
es that are active in the LLC and MAC sublayers is done
by a method that maintains as much independence between
the two sublayers as possible. The LLC sublayer uses the
MAC procedure Check-MAC-Addr to check a remote address.
The MAC sublayer returns a flag that indicates whether or
not the address is an active MAC address. Thus, the LLC
does not have to know the format of the MAC address or
how it is stored in the MAC sublayer. If the MAC address
is active. the LLC checks its own LSAPs to determine if
one of them will accept the remote address of the path as
a legitimate destination address.

LLC and MAC Testing
Once the LLC and MAC interface design was completed,

testing became the next critical issue. The OSI Express
project required that the MAC interface software be one of
the first functional modules on the OSI Express prototype
card. A high percentage of its functionality had to be very
reliable so that code for the LLC and other layers of the

50 rewlerr-pncKARD JoURNAL FEBRUAHY 1990

OSI stack could begin to run on the card. Since the pro-
totype card was not immediately available, another method
of testing had to be developed to make immediate progress.
The scenario interpreter and test harness environment had
already been developed for the HP 9000 Series 300 HP-UX
environment, so we decided to leverage the tools from this
existing testing environment. The scenario interpreter is a
software test tool that handles the sending and receiving
of data packets to and from the software under test, and
the test harness enables testing in different environments.
Both of these test tools are described in the article on page
72. Testing the MAC interface in the scenario interpreter
and test harness environment also allowed the LLC and
other modules that have interfaces to the MAC software to
exercise this interface without writing special test code. It
was also necessary to be able to do a majority of the debug-
ging in the friendly HP-UX environment. Since the
Motorola 68824 token bus controller chip (TBC) had been
previously tested and had proven to be reliable, it was
decided that the TBC could be emulated, thereby avoiding
the need to wait for the hardware prototype to be ready.

As shown in Fig. 4, the MAC interface testing environ-
ment used the existing scenario interpreter and its scenario
syntax and the existing test harness. In place of the generic
bounce-back module, a special MAC interface bounce-back
module was written. The generic bounce-back module is
used by any module that needs to make it look as though
it is receiving data packets from the layer below it. It takes
the data transmitted to it and calls the receive routine of
the layer configured above it. The MAC interface could not
use this module because there is no layer below it and so
special code had to be written in the emulator. In a typical
testing instance, the scenario interpreter reads a scenario
that tells it to send a specific amount of data to the config-
ured layer. The test harness reads the data, which eventu-
ally gets sent to the LLC sublayer. The LLC puts its header
on the data packet and calls the MAC module. The MAC
module prepares all the data structures needed by the TBC

Fig.4. MAC interface software test environment

and transmits the packet. The special MAC interface
bounce-back module is then called. This module performs
the tasks that the hardware and the TBC normally perform;
it sets status in the packet to make it appear that it has
been transmitted onto the network and copies the informa-
tion in the transmitted packet into buffers in the inbound
buffer pool to make it appear that a packet has been received
from the network. It then causes a receive packet interrupt,
which causes the MAC code responsible for receiving the
packet to be invoked. The transmitted and received packets
are processed and forwarded to the LLC software as though
the code was running on the OSI Express card. When the
received data reaches the scenario interpreter, the interpret-
er compares it to the data that was sent and saves the results
of the comparison in the test results file.

Conclusion
The network layer and the data link layer with its LLC

and MAC sublayers provide the network layer user, the
transport layer, with the ability to send a packet efficiently
to any accessible node given just the network layer address.
The network layer locates the destination node even if it
is not on the local area network. The LLC separates packets

it receives that are for the network layer from those that
are for other data link layer users on the OSI Express card.
The MAC sublayer provides an interface to the media that
is independent of the media. This achievement was ac-
complished by adherence to international standards and a
design that minimizes the dependencies of the protocols
upon each other's internal operations.

Acknowledgments
We would like to acknowledge and thank the card and

chip hardware design team which consisted of Mike Per-
kins, Mark Fidler, Paul Zimmer, Alan Albrecht, Dan Dove,
and Nancy Mundelius. Mike Perkins and Mark Fidler were
also vital in the early debugging and testing of the TBC
chip. Mike Wenzel provided vital insights on how to incor-
porate the data link layer into the CONE environment. Cur-
tis Derr provided a ROM version of the LLC/MAC and TBC
interface software which is used with the hardware diag-
nostic program. He also coordinated the COS (Corporatior
for Open Systems) testing of the data link layer. Speci'.
thanks to Motorola's technical support staff, especiai
Rhonda Alexis Dirvin, Paul Polansky, and Robert Ode .
who provided excellent technical support of the TBC.

HP OSI Express Design for Performance
Network standards are sometimes associated with slow
networking. This is nof the case with the HP OSI Express
card. Because of early analysis of critical code paths,
throughpuf exceeds 600,000 bytes per second.

by Elizabeth P. Bortolotto

ERFORMANCE ANALYSIS of the HP OSI Express
card began during its early design stages and con-
tinued until the product was released. During the

course of the project several different analysis techniques
were applied. These included simple analytic modeling,
path length estimation, simulation, and prototype measure-
ment. Several tools were developed to make the prototype
performance measurements. Many estimations of through-
put and delay were made during the development phases
of the OSI Express project. These intermediate results led
to redesign or code reduction efforts on the bottlenecks in
the software.

In the end, we far exceeded our initial performance ex-
pectations. Early performance investigation was invaluable
in pinpointing potential bottlenecks when there was still
time to make design changes. We learned that the most
fertile areas for performance enhancement and code path
reduction are usually in module redesign, not code tuning.

Static Analysis.
The earliest OSI Express performance activity was to

estimate the amount of code in "typical" inbound and out-
bound data paths. A typical inbound data path was defined
as the code executed when a data packet is received from
the LAN going to the host service. For this estimate, it was
assumed that the packet arrives without errors. Some as-
sumptions were also made about what processing was typ-
ical or most common. These assumptions were periodically
revised as we learned more about the system.

Once the path estimates were derived, throughput and
delay measurements could be obtained. This process was
referred to as static analysis because the statistics obtained
were best-case and worst-case estimates without any refer-
ence to how a dynamic system behaved. The static analysis
process derived these statistics by comparing the number
of CPU (and DMA) cycles required by a single packet to
the total number of cycles available in the hardware.

The first path measurements were made in units of 68020

FEBRUARy 1990 HEWLETT-pACKABD JoURNAL 51

assembler instructions. An early analysis revealed that
using ten CPU cycles per assembler instruction was a fairly

safe (and usually conservative) estimate. This was true un-
less the design engineer used a number of multiply or di-
vide instructions. In fact, early analysis showed the high
cost of these two instructions and steps were taken to avoid
using mult ipl ies and divides unless necessary.

Because the earliest performance estimates were attempt-
ed before much code was written, it was necessary to study
each software module carefully to understand all of the
tasks that the software would be required to perform. The
typical paths (inbound and outbound) could then be
roughly pseudocoded. A second analysis during this t ime
revealed that the C compiler on the development systems
typical ly generated three to four 68020 assembler instruc-
t ions per l ine of simple C code. A simple C code l ine was
defined as a l ine in which only one operation is performed.

Therefore, i f a l ine of C (or pseudo C) was

(b & a) l (c < < d) ;

it was estimated as four simple C instructions and therefore
twelve to sixteen 68020 assembler instruct ions.

The inbound and outbound paths were estimated sepa-
rately because independent estimates for each path were
needed to understand the complete set of tasks necessary
to transfer a packet from one node to another. The two
parts are not the same length. We expected to find the
inbound path longer (in terms of instructions) than the
outbound path.

Once the estimation had been completed, the number of
assembler instructions in both paths was multiplied by

10 (ten cycles per 68020 instruct ion). The result is the

number of processor cycles used in transmitting and receiv-
ing one typical data packet by the OSI Express card. Since
the basic hardware architecture of the OSI Express card
was in place, it was relatively easy to estimate the
maximum possible throughput and minimum possible

delay. The fol lowing is an example of a stat ic analysis
throughput equation for the OSI Express card.

Throughput in bytes per second =

ITC(PW(RC + wC) + rC)l(P - H)

where TC : totalavai lablecyclespersecond
PW : sizeof thepacket inwords [16bits)
RC : numberofcyclesperreadaccess
WC : number of cycles per write access
IC : number of instruction cycles in receive

data path
P : packets ize inby tes
H : headers ize .

Some of these values were sl ightly variable. Average or
typical values were often used, and care was taken to esti-
mate conservatively.

First Path Estimation
During the course of the OSI Express project, two com-

plete data path estimations were made. The f irst est imate
was made during the design phase, before much coding
had begun. The second estimate was made after most of
the code had been written.

The first code path length estimate was done while the
project was in the early design phase. Only a portion of
the code was written. To get the path length for the code
that was written, a mixed listing of the code was obtained.
A mixed l ist ing in this case was an assembled l ist ing of
the 68020 instructions intermixed with the original C in-
structions. The data path was then identified and the as-
sembly instructions counted. In addition to giving us the
instruct ion count, this exercise also educated us on how
the C compiler was behaving and what sort of assembly
code was generated.

As discussed before, most of the code was writ ten at the
time of the first path length estimation when most of the
development engineers were working on their external de-
signs. The estimation method used was to read the ISO
specifications for each layer and the ERS for CONE (com-
mon OSI networking environment), and write pseudocode
for the data path. The pseudocode was then translated into

Protocol Other////////l I
CONE

Uti l i t ies
Bufter

Manager

/z//t Protocol'r/r:/ry, Other

r
CONE Buffer

Utilities Manager
//Z%z

o 3000

!
I

6 zooo
;
N

3 rooo

'
BH BMI Layers TP lP LLc MAc

7-5

Fig. 1. Flrst-estimate (early design phase) OSI Express card

instruction count summary for 1K-byte packets outbound to

the nefuvork.

52 newrerr-pncKARD JoURNAL FEBFUARY 1990

BH BMI Layers TP
7-5

LLC MAC

Fig.2. Flrst-estimate OSI Express cardlnstruction count sum-
mary for 1K-byte packets inbound from the network.

68020 instructions using the the multiplier factors dis-
cussed above. This entire process took about six months.

Figs. 1 and 2 show the results of this first estimation
process. Fig. 1 displays the number of instructions in the
outbound data path and Fig. 2 displays the number of in-
structions in the inbound data path. The graphs show that
the largest code segment in the data path at that time was
the memory management code. We therefore decided to
redesign the memory manager code to reduce the number
of instructions in the most common data path.

A number of smaller code changes were also made as a
result of this first performance investigation. Redundant
instructions, excessive multiplies, unnecessary initializa-
tion, and more streamlined code processes were identified.
In addition, the team learned more about code modules
that were influenced by decisions in distant code modules.

Second Path Estimation
The second estimate was made after the code was basi-

cally written but before much unit testing had been done.
This estimate was quite a bit quicker because there was no
pseudocoding to do. In addition, the data path was pretty
well understood by this point. Therefore, mixed listings of
all the code modules (and protocol layers) were obtained
and a walkthrough of the data path was performed. Again,
care was taken to be as accurate as possible, since the
performance statistics resulting from the code count were
only as good as the data.

Code was counted for both the inbound and the outbound
data paths. By the time the second count was made there
had been a number of design changes and developments.
Figs. 3 through 6 show the results of these changes. The
backplane handler code had exploded into a much larger
module than was initially expected. This module then be-
came the primary target of a performance redesign effort.

As before, a number of performance opportunities were
identified as a result of the second walkthrough. In addi-
tion, we learned more about how the OSI Express card
would behave when parameters were varied in the FTAM,
IPC, and CIA host code.* Several changes were suggested

-FTAM : File Transfer Access and Management. IPC : Interprocess Communication.
CIA : CONE (Common OSI Networking Environment) Interface Adapter

Protocol'/,%r/rt
CONE Buffer

Other Utitities Manager

r : :.:: v%/1.

BMI Layers 7-5 TP tp LLC MAC

Fig. 3. Second-estimate (after coding and several design
changes) instruction count summary for 1K-byte packets out-
bound to the network.

to the designers of these modules. In one case, we found
that performance was severely impacted during file trans-
fers when the data was presented to the OSI Express back-
plane in 256-byte buffers instead of kernel clusters (2K-byte
buffers).

Connection Establishment Path
In addition to the common data path, the connection

establishment path was also analyzed during the OSI Ex-
press performance investigation. This analysis was made
a little later in the project after the second path estimate
had been completed. For the sake of speed, this path was
counted in lines of simple C. By this time we had gained
quite a bit of confidence in our estimation method ald in
our knowledge of the code processes. This estimation took
much less time than the other two.

It was discovered that the amount of code required to
secure a connection was quite a bit larger than that required
to send or receive a data packet. Of course, we knew that
this was true before even beginning the connect path
analysis. We just did not know how large it was. Our inves-
tigation showed us that the connect code path was g1.,424

lines of C code (simple) in a typical case. In other words,
it would take approximately 366 milliseconds for a connect
to complete successfully. (We assumed four 68020 instruc-
tions per C instruction).

It was also discovered that the connect path provided
many opportunities for path reduction. Once a particular
code path is fully understood, performance opportunities
are usually obvious. This was definitely the case in this
analysis and both of the previous path estimation exercises.

Benefits of Early Performance Walkthroughs
There are a number of benefits to performance analysis

during all of the phases of new product design. The benefits
far outweigh the cost of the additional engineer (or two) if
one of the project goals is good performance. The benefits
are obvious when path analysis reveals code redundancy
or other time-saving opportunities. Other benefits that pro-
vide big paybacks may not be so obvious. The following
is a list of the less obvious benefits we found during OSI
Express performance analysis.
r DesiBn inconsistencies were exposed.

CONE Buffer
protocol Other Utilities Manager

r
2000

1 500

1 000

500

0
BMI Layers 7-5 TP lP LLC MAC

Fig. 4. Second-esllmafe instruction count summary for 1K-
byte packets inbound from the network.

q

I

q

o
N
o
@

1 000

500

q

.9
o

o

o

6
o

FEBRUARv 1990 HEWLETT-pAcxnno lounter 53

r The design engineers became performance conscious
and wrote cleaner code.

r There was time for redesign of bottleneck areas.
r We became much more proficient in performance

analysis. Future products benefit from this kind of edu-
cation.

Simulating Flow Control
The second major step in the OSI Express performance

study was to create a simulat ion model to aid us in discov-
ering how configurable parameters in the OSI Express stack
affected performance. The stat ic or path f low analysis that
was discussed above had yielded best possible throughput
and delay stat ist ics. In other words, the stat ic analysis had
given us an idea of what the upper performance bounds
were, given our code paths. What quickly became apparent
was that i t was quite improbable that we could achieve
these upper bounds unless the card was configured with
optimal parameters and al l other condit ions were perfect.
Fig. 7 shows the dif ference in throughput when only one
parameter (packet size) is varied.

The reason that packet size plays such a substantial role
in throughput is that i t takes approximately the same
amount of work to process an BK packet (the maximum
packet size al lowable by the IEEE 802.4 standard) as i t does
a 1K packet. At least this is true i f the memory management
design is optimal for fast throughput.* Larger packets gen-

eral ly require more CPU cycles to process (for memory
copies, DMA transfers, checksum operation, etc.). How-
ever, the dif ference in the cycles required to process two
packets of dif ferent sizes is proport ional ly smaller than the
difference in the number of bytes transferred. Addit ional ly,
processors with cache memories can minimize the dif fer-
ence in the CPU overhead between large and small packets

because copies and checksum operations are repeti t ive
looping functions.

'Sometrmes memory managemenl des gns are optimized for eff cient memory use al the
expense oi fasi lhroughput ln the OSI Express prolect, we atlempted to optimize for both

Transport Layer
The OSI transport layer (layer 4) is the layer where the

packet size is determined. Other transport parameters also
have values that can dramatically influence system
throughput and delay. The parameters that govern the flow
of data from one node to another were the major topics of

our simulat ion study.
The transport layer parameters have signif icant impact

on the communication performance of a network node.

The f low control algori thm in the transport layer is respon-

sible for the dynamic end-to-end pacing of conversation
between two nodes. I ts main purpose is to ensure that one
node does not send data faster than another node can re-

ceive i t . Given two connected nodes, one node wil l usual ly
be able to execute faster than the other. The best throughput
between these two nodes is achieved when the slowest
node is kept completely busy. I f the f low control algori thm
allows the slower node to become idle, throughput wil l be

lower than i ts potential maximum. If the f low control al-
gori thm al lows too much data to be sent to the slower side
(usually the receiving side), the slow side wil l eventual ly
be f i l led to capacity and be unable to accept more data.
This results in lost data, which must be resent. Resending
data also causes performance degradation.

The f low control algori thm usually has a number of pa-

rameters that can be set by the system manager. These
parameters are available so that the algorithm can be tuned

to provide the best performance in a specif ic user environ-
ment. Some of the parameters at the transport layer include
the transport segment size (the maximum amount of data

in each packet), the transport window size (the maximum
number of packets that can be sent at one t ime), the amount
of credit to extend to a peer, the frequency of acknowledg-
ment packets, and the length of the retransmission t imer.

Simulation Model
The simulat ion model of the OSI Express card was writ-

ten in a language cal led PC Simscript I I .5. I t was primari ly

designed to expose and isolate the dynamic elements of

CONE
17.8% \

2195 \

)

Butfer Manager
14.10k
1 736

CONE
19.3% \28e5

V

Buffer Managel
13.3"/"
1992

Protocol
Protocol
10.40/"
1 286

Other
57.7"/"

7102

Fig. 5. Second-esttmate code breakdown by module for 1K-
btyte outbound packets rn number of inslructlons and percen-
tage of total.

54 HEWLETT PACKARD JOURNAL FEBRUARY i990

I
Other /
54.8"/"'
81 96

Fig. 6. Second-esttmate code breakdown by module for 1K'
byte inbound packets in number of tnstructtans and percen'
tage ol total.

\ ,, 12.6o/o.Yr
1884

the OSI Express system. Therefore, the transport layer, the
backplane message interface layer (because of the segmen-
tation capability at the backplane), and the CONE scheduler
were simulated in great detail. The upper layers (ACSE,
presentation, and session) were not really simulated at all
because they do very little processing for a data packet.
Instead the simulation merely "worked" for the amount of
time that the upper layer headers would typically require
for processing.

The simulation model was specifically designed to allow
a user to vary parameters, getting a performance report at
the end of each simulation run. The idea was that the
simulation would help the OSI Express team define which
parameter values gave the best throughput and delay values
and why.

A number of assumptions were made in the simulation
model that are not necessarily true in the actual OSI Express
system. The reason for these simplifying assumptions is
that they streamlined the simulation implementation and
facilitated the experimentation process. Since the simula-
tion was written to isolate dynamic behavior, details that
might obscure or complicate the simulation were ignored.
Although the system representation had been simplified
extensively, an attempt was made to be meticulous in
simulating those parts of the real system that have an im-
pact on dynamic behavior on the OSI Express card. To a
Iarge extent, the art of simulation is knowing what not to
simulate.

The following is a list of the major assumptions made
during the design of the simulation program:
I All packets arrive in order and without error.
I All data transmissions from the host contain the same

amount of data for all connections (the amount of that
data is a parameter).

I Since packets are never lost, no retransmission timers
or AK* delay timers are included in the transport simu-
lation.

I The two target nodes transmit all data at the highest
priority level (IEEE 802.4 specifies four priority levels:
O , 2 , 4 , a n d 0) .

r There is no simulated connect setup or tear-down time.
The assumption is that connections are fully established
before the data is sent to the card.

r All packets sent onto the simulated network are either

'AK : Acknowledgment packel

Packet Size (Bytes)

Fig.7. Throughputversus packet size for awindow size of 1 0

data packets or Al(credit packets. None of the routine
features in the internet protocol are simulated. Con-
sequently, there are no end-system or intermediate-sys-
tem hello packets to contend with.

I The packet headers are 80 bytes long.
r Card memory is a user-configurable parameter. However,

the inbound packet data memory is assumed to be half
of the total data memory. The outbound data packet
memory is also assumed to be half of the total data mem-
ory.

I The host data can be sent to the card faster than the card
can consume it. Also, on the receiving side, the host can
consume the data faster than the card can send it. In
short, the host is assumed to be an infinitely fast source
and sink.

. The maximum speed of the token bus is 10 Mbits/s. An
assumption is made that the speed with which packet
data can travel is 1 Mbyte/s. This is because there is
overhead for the IEEE 802.4 protocol that prevents the
data packets from traveling much faster.

Simulation Model Features
The simulation model has a number of features that in-

crease its usability. The model can be run in either half-
duplex or full-duplex mode. In half-duplex mode, one of
the two communicating nodes is a sender and one is the
receiver. In full-duplex mode, both nodes send and receive
simultaneously.

The model has the capability of varying four parameters
automatically and running a complete simulation for each
value of the parameters. Each of the four parameters can
be given a range of values and a step size to vary. Statistics
are collected for each of the simulation runs and saved in
a fi le.

The model allows the communicating nodes to have a
number of connections alive at the same time. In this mode,
the model can calculate statistics for each connection. as
well as global statistics.

The model has various debugging levels that can be
turned on to enable the user to understand better what is
happening during a simulation run.

There is a separate default parameter generator program
that enables the user to specifiy default parameters easily.
The generator program then creates a default file that is
used by the simulation program.

1 50000

1 40000

8 rgoooo
q)

o

t rzoooo
o
o)

i ttoooo

1 00000

Received Data Packets per AK/Credit Packet

Fig.8, Throughput versus credit f requency for a packet size
of 1K bvtes.

E oooooo
o
()
o

b 400000

o
o

h zooooo

1 K512124

FEBRUARy 1990 HEWLETT pAcKARD .touRtel 55

The simulation model generates and saves a number of
useful statistics during execution. These are formatted and
saved in a file for later examination. Some of these statistics
are:
I Throughput in bytes per second
I Total simulaton delay in bytes per second
I Mean packet delay in milliseconds
r Maximum packet delay in milliseconds
I Mean transport-to-transport delay in milliseconds
I Mean acknowledge delay in milliseconds
r Maximum acknowledge delay in mil l iseconds
r Average interval time between packets, in milliseconds
I Total interval t ime between packets, in mil l iseconds
r Percentage of CPU idle t ime
I Maximum and minimum queue depths for five system

queues.
The simulation model has a very friendly user interface

to simplify the selection of the system parameters. In addi-

tion, the user interface displays the parameters obtained
from the default file and allows the user to change them
if necessary.

Simulation Study Results
Once the simulation was written and verified (by hours

of painstaking cross-checking) a number of simulation ex-
periments were run. Time and space prevent describing
all of the results except the most interesting: what happens
when the transport window size and the frequency of send-
ing AK/credit packets are varied.

Figs. B and 9 show the impact of varying these two param-

eters in the simulated system. Each of the data points in
these graphs represents one complete simulation run with
a particular set of parameter values. To get Fig. 9, the win-
dow size was set to 10 and the packet size fixed at 1K
bytes. For the sake of simplicity, it was assumed that incom-
ing packets were only acknowledged when it was time to
send more credit (permission for the transmitting node to
send more packets) to the peer node. The frequency of
sending credit packets was varied from one to ten. In other
words, during the first simulation run, the window size
was ten and the receivinq node sent out an AK/credit packet

1 3 5 7 I 1 1 1 3 1 5 1 7 1 9 2 1 2 3 2 5 2 7 2 9

Packets per AK

: :wil:#=?,-. wil::il = 33
Fig.9, Throughput as a function of window size and packets
per AK for a packet size of 1K bytes.

56 HEWLEfi,pAcKARD JoUBNAL FEBRUARY i990

to the sending node after each packet was received and
processed. The AK/credit packet acknowledged the packet
that was received and gave the sending node permission
to send another. During the next simulation run, the credit
frequency parameter was set to two. An Atr?credit packet
was therefore sent after two packets had been received by
the receiving node and processed. In this case the receiving
node acknowledged reception of two packets and gave per-
mission to send two more.

As shown above, the best throughput value is achieved
when the receiving node sends an Al?credit packet every
sixth packet. This point represents a balance between send-
ing AKs too frequently and not sending them frequently
enough to keep the system ful ly pipel ined. I f too many
AKs are sent, they effectively increase the CPU overhead
required to process packets (Fig. 10). That is because the
number of instructions required to construct and send (and
receive) AK packets is signif icant.

On the other hand, if AK packets are not sent frequently
enough, the sending node will run out of packets to send
and will have to wait for an AK before starting to send
more (the window size limits how many packets can be
sent without an AK). When the sending side stops sending
packets (even for a short while), interarrival time between
incoming packets at the receiving node will, in general,
increase.

Dozens of simulation experiments were run during the
course of the OSI Express project. The flow control param-
eter defaults were set based on the information from the
simulations. In addition, we learned a great deal about the
behavior and resulting statistics of the transport stack.
Some design decisions were changed based on the results
of the experiments. For example, we decided not to give
priority to inbound packets by allowing a logical link control
(LLC) process to execute until all the receive packets were
processed. We found out to our surprise that the simulated
throughput dropped sharply when we experimented with
this design. The reason was that the AK/credit packets were
being excessively delayed and the queues between the
transmitting and receiving node were therefore emptying.

Performance Measurement
The final challenge of the OSI Express performance proi-

ect was to measure the product, compare the measured
performance with the estimates, and identify any bottle-

r00

1 2 3 4 5 6 7 8 9 1 0

Packets Per AK

Fig. 10. CPU utilization versus credit f requency for a packet

size of 1K bytes.

F

S g o
f

c
o 8 0

rl)

a - ^
z t u
o
q

o
t 6 0

neck code modules. Several tools were designed and writ-
ten to help us get real-time performance measurements.
These tools were basically designed solely for prototype
measurement, not for field or customer use. In the following
paragraphs, three tools are briefly described. These tools
are the real-time procedure tracer, the statistics monitor,
and the statistics formatter.
Real-Time Procedure Tracer. This tool consists of a special
entry and exit macro call that was put after the entry and
before the exit of every procedure in the OSI Express code.
Each module in the OSI Express code was assigned a
hexadecimal number range. The designers of each module
then assigned an even number within that range to each
routine in the module. A second value (1 + even number)
was reserved for the exit macro. These numbers were
passed as parameters in the macro calls. Both the entry
and the exit macros caused the passed hexadecimal value
to be written into a reserved memory location called CtSr-
ERN. The idea is that using a logic analyzer (such as the
HP 64000, HP 1630, or HP 1650), a user can trace writes
to the CISTERN location and see the procedures being exe-
cuted in real time. The hexadecimal value ranges assigned
to each module allow the user to limit the values read to
a specific number range. This way, the user can choose to
see only the transport layer executing, if desired.

To make the traces more readable, a formatter program
was written for HP 64000 trace files. The formatter required
a file that defined the hexadecimal values for specific pro-
cedures. It then produced very readable formatted traces.
Fig. 11 is an example of one of these formatted traces.

The procedure traces were used extensively once inte-
grated OSI Express code measurements could be made.
These traces allowed us to see how long each module was
executing in as much detail as we cared to see. Code could
be quickly tuned and remeasured. In addition, the trace
macros were optionally compiled, ensuring that they did
not provide needless overhead in the final product code.
Statistics Monitor. A second tool that was designed into

c a l l B H _ g € r _ d a r a f o r t h e o u r b o u n d d a t a

: B H - 8 e r - d a t a e n r r y

E N T E R B H _ G E T _ D A T A _ P (0 x 1 2 0 4)
E N T E R B H _ Q U E U E _ I R s _ F _ p (0 x 1 2 5 c)
E X I T B t l _ Q U E U E _ T R S _ F _ p (0 x 1 2 5 c) g r o s s 1 2 . 4 0 u s , n e r 1 2 . 4 0 u S
E N T E R B H _ M A I N _ I s R _ F _ p (0 x 1 2 9 0)

E N T E R B H _ M P X _ F _ P (0 x 1 2 8 4)
E X I T B H _ M P X _ F _ P (0 x 1 2 8 4) g r o s s 5 1 . 6 0 u S , n e r 5 1 . 6 0 u s
E N T E R B H P R o C E S S I R S F D (0 x 1 2 8 c)

ENTER START_REQ_p io"- iz;al
E X I T S T A R T _ R E Q _ p (0 x 1 2 7 4) g r o s s 3 8 . 4 0 u s , n e t 3 8 . 4 0 u s
ENTER START_DMA_READ_P (0x12ac)

ENTER END_DHA_READ_P (0x1254)
E X I T E N D _ D M A _ R E A D _ p (0 x r 2 5 4) g r o s s 5 6 . 8 0 u s , n e r 5 5 . 8 0 u s

E X I T s T A R T _ D t r A _ R E A D _ p (0 x 1 2 4 c) g r o s s 1 4 6 . 3 2 u S , n e t 8 9 . 5 2 u S
E N T E R c o N T I N U E _ R E Q _ p (0 x L 2 7 c)

E N T E R D o _ Q U A D _ F E T c H _ p (0 x 1 2 6 8)
E X I T D o _ Q U A D _ F E T C H _ P (0 x 1 2 6 8) S r o s s 9 1 . 2 0 u S , n e r 9 1 . 2 0 u s
E N T E R D o _ D M A _ c l , t D _ p (0 x 1 2 7 8)

E N T E R D o _ c C M D _ L I N K _ F N _ P (0 x 1 2 6 c)
E X I T D 0 C C M D L I N K F N _ p (0 x 1 2 6 c) g r o s s 5 3 . 2 0 u S , n e r 5 3 . 2 0 u S

e x r r t o _ o M l _ c t t 5 _ p l o x r l i a y g r o s s l i T . o o u s , n e r 8 3 . 8 0 u s
E X I T C o N T I N U E _ R E e _ p (0 x 1 2 7 c) g r o s s 3 1 3 . 5 0 u S , n e r 7 5 . 3 O u S
E N T E R R E Q _ C 0 M P _ o U T _ p (0 x 1 2 7 0)
E X I T R E Q _ C 0 M P _ o U T _ p (0 x 1 2 7 0) g r o s s 3 3 . 7 0 u s , n e t 3 3 . 7 0 u S
E N T E R D o _ Q U A D _ F E T c H _ p (0 x 1 2 6 8)
E X I T D O _ Q U A D _ F E T C H _ p (0 x 1 2 5 8) g r o s s I 5 . 3 0 u S , n e r 1 6 . 3 0 u s

E X I T B H _ P R o c E S S _ I R s - F _ p (0 x 1 2 8 c) B r o s s t A 9 . 7 2 u s , n e r l 5 t . t O u S
E N T E R B H _ M P X _ F _ P (0 x 1 2 8 4)
E X I T B H _ M P X _ F _ p (0 x 1 2 8 4) g r o s s 1 8 . 8 0 u S , n e r 1 8 . 8 0 u S

E X I T B H - M A I N _ T S R F _ p r 0 x I 2 9 0) g r o s s 9 5 3 . 1 4 u S . n e r 6 3 0 2 u S
E X T T B H _ c E T _ D A T A _ p (0 x 1 2 0 4) g r o s s 9 7 0 . 8 4 u S , n e r 1 0 5 . 1 0 u S

+ B H _ g e ! _ d a r a e x i r

Fig, 11. An example of a formatted procedure trace.

the OSI Express stack was the statistics monitor. A number
of primitive statistics are kept in the OSI Express code (see
Fig. 12). In addition, statistics are kept (these optionally
compiled) about each of five major queues in the OSI Ex-
press system (see Fig. 13). These statistics can be retrieved
and displayed upon command. The statistics can be
cleared, read, or read and cleared. The clear command
clears all of the statistics except for current-value statistics
such as the current queue depths.

These statistics made it possible to get real-time through-
put values at at the card level. In addition, the queue statis-
tics provided some troubleshooting capability because cer-
tain queue depths signaled flow control problems.

Statistics Formatter. The OSI Express statistics formatter
is a tool designed to allow a user to run a user-level test
program a number of times automatically, varying OSI Ex-
press parameters each time. The transit statistics are cleared
at the beginning of each test run and sampled at the end.*
The purpose of this tool was to find the optimal parameter
set automatically on the working prototype. The simulation
model had this basic capability, so in effect, we were
simulating the simulation model.

Once all of the test program runs have executed, the
formatter can retrieve the file with the statistical samples
and display the results in several ways. Fig. 14 is an exam-
ple of one of the types of displays that can be obtained.
The user now has the opportunity to identify, for example,
the highest throughput obtained when packet size is varied
because the test program was repeated for several possible
packet sizes.

Performance Results
After the OSI Express prototype testing had been com-

pleted, final performance measurements were made. Of
course, numerous performance values are possible, de-
pending on how the card is configured. However, our best-
case throughput for 8K packets was approximately 600,000
bytes per second.

This result reflects numerous redesign, code rewrite, and
code tuning efforts made by the whole team during the
entire lab prototype phase of the project, Many mil-
.Actually, there are transient start-up and cool-down pipelining effecls that tend to distori
the sample. To prevent distortion, the statistics are cleared after the start-up lransient has
died out and sampled before the cool-down transient begins.

Current Counters and Queue Depths

Number of Open Connections:
Global Reiransmissions:

Bytes Packets Throughput
Frontplane Transmissions lo Hosi:
Frontolane Transmissions to Network:
Backplane Transmissions lo Host:
Backplane Transmissions to Network:

Current Queue Depths

Number of Messages in Backplane Oueue (to Host):
Number ol Packets in Fronlplane Oueue (to Host):
Number ot Packets in Frontplane Oueue (to Network)i
Number ol Packets in Relransmission Queue:
Number of Packeis in Transport Segment Oueue (to Network):
Number ot Tasks in Scheduler Queue:

Fig, 12, Primitive statstlcs kept in the OS/ Express code

FEBRUARy 1 990 HEWLETT-pAcrnno lounuL 57

Transmit

l : l
_-]__

Receive
A
t - - l
l : l

DataPackets t
I-;;r

ftr_[:tT'

@

l : l

=
I

TBC

Outbound
Queue

IEEE 802.4 LAN (1o-Mbit/s)

BMI = Backplane Message Inlerlace
LLC = Logical Link Control
MAC = Media Access Control
TBC = Token Bus Conlroller

Fig. 13. Locations of the five queues in the simulated system

on which stalistlcs are keDt.

liseconds were cut out of the code path based on informa-
tion uncovered by these investigations' The majority of
these improvements were made well before most code tun-
ing efforts began. There is no way that the same code re-
ductions could have been made after the code had been
integrated.

Conclusion
Early performance investigation and prediction is vital

to performance sensitive projects, especially if they are

Fig. 14. One of the types of displays produced by the OSI
Express statlslics tormatter.

large and involve a number of design engineers. A large
amount of very useful data can be retrieved with very little
investment if it begins early enough in the project and
continues through code integration. Full performance in-
vestigations should be a part of every product life cycle.

Acknowledgments
Many thanks to Mike Wenzel at Roseville Network Divi-

sion and Martin Ackroyd at FIP Laboratories in Bristol for
their expert consultation and assistance. Thanks also to
the rest of the OSI Express team for their patience and
many excellent suggestions. Special thanks to Glenn Tal-
bott for writing the CISTERN formatter, and to David Ching
for writing the statistics formatter tool.

TMF Table

Statistic

Current Counlers & Queue Depths
0) Thrupul-BP Bytes in [B/s]
1) FP Packets Out
2) LFP Bytes Out
3) FP Packets In
4) FP Bytes In
5) BP Packets Out
6) BP Bytes Out
7) BP Packets In
8) BP Bytes In
9) Number of Timer Ticks

10) Timer Tick Value [ms]
11) Number of Global Retrans
12) Number ot Open Connections
13) Cur. IFACE Oueue Depth
14) Cur. Retrans Queue Depth

CTRL Graph# (0,0)
Parameters Dump Exit Up Down Left Righl X# Y# Max: (0, 4)

Functional
Unit

308593 114988
44 18

1684 'to77

40 27
5443 6673

9 5
354 298
27 24

4140 5164
0 0
0 0
0 0
1 1
0 0
1 1

58 newLrn-pncKAFD JoURNAL FEBRUARv 199o

The HP OSI Express Card Software
Diagnostic Program
The software diagnostic program is a high-level mnemonic
debugger. The structure definition utility isolates the
diagnostic program from compiler differences and data
definition changes.

by Joseph R. Longo, Jr.

PPROPRIATE DIAGNOSTIC AND DEBUGGING
TOOLS are essential to any successful software or
hardware development effort. A project as large as

the HP OSI Express card development effort posed some
challenging opportunities. Not only was most of the tech-
nology for the card, both software and hardware, still being

defined, but the target computer line was still under de-
velopment as well. Tools such as the HP 64000-UX micro-
processor development environment and the HP 1650 logic

analyzer were evaluated to understand what was already
available. These tools provided features such as single-step-
ping and data tracing and were indispensable for doing
Iow-level debugging. However, a much higher-level debug-
ger was also necessary to observe protocol operations and
system dynamics. Obtaining this information by decipher-
ing screens of hexadecimal data would be very tedious and
time-consuming. AIso, until the card management tools
were in place much later in the development cycle, there
would be no means of monitoring the utilization of re-
sources on the card.

For these reasons, it was decided to pursue the develop-
ment of in-house debugging and diagnostic tools. The fol-
Iowing design goals were established:
I No existing functions duplicated
r Modular design
r Evolving feature set
I Minimal impact on product performance
I Minimal impact on card software size
I No additional hardware on card required
r No addit ional coding in product modules required
r Can be used when all other debugging hooks are re-

moved.
The design goals can be summarized as: (1) use the l im-

ited available time and engineers to develop new functions
rather than trying to duplicate features provided elsewhere,
(2) provide flexibility to accommodate changes in the de-
velopment environment and new requests from the cus-
tomer base, and (e) ensure that nothing special needs to
be done to use these tools and that their use does not impact
the product being developed. While these goals may appear
to be unattainable, their intent was to focus the project so
that something usable could be provided in a reasonable
time and the effort would not collapse under its own weight
by trying to be the last word in diagnostics. The result of
al l this was the development of two modules: the structure

definition utility, which provides a dictionary of data def-
initions that can be accessed programatically, and the soft-
ware diagnostic program, which is a high-level mnemonic
debugger that can monitor the resources on the card and
allow the user to view data from the card in various formats
(see Fig. 1).

Structure Definition Utility
During the early stages of the development of the card

software, the definitions of the internal data structures were
constantly in a state of flux. Any module or program ref-
erencing these data types was constantly being recompiled
in an effort to keep it up to date. It was quickly recognized
that it would not be practical or productive if the diagnostic
tools, test programs, and formatters had to be recreated
every time a data type changed. Also, at any time in the
development process there could be different versions of
protocol or environment modules under test. It would be
impractical to require that a different version of the diag-
nostic and test programs be used depending on which ver-
sion of a module was being tested.

A second obstacle in the creation of the diagnostic tools
had to do with the two compilers that were to be used.

Fig. 1. Speclal diagnostic and debugging tools created fol
the OS/ Express card development project consisted of the
software diagnostic program, which includes the data access
library, and the structure definition utility.

FEBRUARy 1990 HEWLETT,pAcxIRo ..iouRrunl 59

The card code was to be compiled with the 68000 C com-
piler. The diagnostic programs, which resided on the host,
used the standard UNIX C compiler. The primary difference
between these two compilers has to do with the way data
types are aligned and padded. The 68000 compiler aligns
types such as ints on 2-byte boundaries while the UNIX
compiler aligns ints on 4-byte boundaries. Therefore, a data
buffer retrieved from the card could not be interpreted by
the host program if the same data types were used. These
differences prevented the host diagnostics from compiling
with the same C header files as the card code.

It was obvious that some mechanism was needed to iso-
late the test and debugging programs from both the fluctu-
ations in the data structure declarations and the differences
in the compilers. The structure definition utility (SDU) was
developed for this purpose. The SDU is used to create a
data dictionary containing the C data type definitions. The
definitions stored in the dictionary can then be accessed
via standard SDU library routines. When a data type
changes, the new definition is loaded into the dictionary
and the engineer can continue testing and debugging with-
out recompiling.

The SDU consists of three parts: a stand-alone parser/
compiler program, sdu.build, which processes the C type
definitions and creates the data dictionary, the dictionary
file, which is generated by the sdu.build program, and the
dictionary interface library, which allows applications to
access the information stored in the dictionary (Fig. 2).

When designing the SDU it was necessary to keep in
mind that regardless of how creative the end product was,
no one would ever use it if it was too complicated, took
too long to operate, or required that data be maintained in
more than one location. Given the number of type defini-
tions, it was especially important that the sdu.build program

be able to accept standard C include files as input. This
also meant that the sdu.build parser had to recognize as many
of the C data type constructs as possible. After these two
criteria were satisfied the whole process of creating and
accessing the dictionary still had to remain relatively sim-
ple and fast.

Input Format
The input to the SDU parser is a C include file containing

the C data types, type definitions, and #defines from the
program header (.h) files. To provide for portability between
compilers and to simplify the parser design, some minimal
structure had to be imposed on the input data. The basic
format for the input data is:

\
type specifiers
! !
type delinitions, #defines, and
data default values
.)

The input is divided into two parts: the type specifiers
and the type declarations. The punctuation denotes the
beginning and end of input and separates the two sections.
The type specifiers are optional, but the punctuation is

UNIX is a registered trademark of AT&T in the U.S.A. and other countries.

60 tewlerr-pecKARD JoURNAL FEBRUARv 1990

required even if the specifiers are not entered. While syntax
is important, the input format is relatively free-form. For
example, there are no restrictions on the number of state-
ments per line. At least one blank must separate identifiers
on an input line, but for the most part, separators (blanks,
tabs, newlines) are ignored.

All data declarations are defined from the atomic C data
types (int, char, short, etc.). The alignment and sizes of the
C basic types are preloaded into the data dictionary. These
values can be redefined and/or new values added using
the type specifiers input. The primary reason for redefining
the basic type values is the use of a different C compiler.
At least two and possibly three different C compilers were
expected to be used during the development of the card
code. The main differences between the compilers were
the alignment of the data types and the padding of strucVunion
data types. The SDU compiler defaults to the alignment
requirements of the HP g000 Series 300 and 68000 C com-
pilers. The syntax for a type specifier entry is:

type, type_len, alignment, format;

Type is an ASCII string representing the name of the type
specifier to be loaded. Type-len is a decimal value indicating
the storage requirements of the type specifier in bytes (e.g.,
storage for the C type char is one byte). Alignment is a decimal
value indicating the byte alignment of the type when it
appears within a strucvunion type declaration. The value is
in bytes and must be greater than zero. The value is used
to determine to what boundary (byte, even byte, double
word, etc.) the type should be aligned. The value is also
used to determine the padding within the struct type. The
format field is a single character indicating the default dis-
play form for this data type (x : hexadecimal, d : decimal,
a : ASCII).

Variable Definitions and Constants
The C variable definitions and constants are specified in

the second part of the SDU parser input. The variable def-
initions must be in standard C format as defined in the C
reference manual.l Data declarations (e.g., intabc;) and type

Flg.2. The structure def inition utlrty conslsts of a stand-alone
parseilcompiler program (sdu.build), a dictionary file built by
the program, and a dictionary interface library. lnput to the
SDU ls a C include file containing C data types, type defini-
tions, and #defines trom the program header (.n) files.

definitions (typedefs) are accepted as input. Both simple and
complex (strucUunion) definitions can be loaded. Constants
are loaded using the C preprocessor #define statement. The
constant values can be used in subsequent #detine state-
ments or to specify the size of an array in a type definition.
Application programs can access the #define values once
the dictionary is created. The SDU compiler will also rec-
ognize C comments (/* */) and some forms of compiler
directives (#ifdef, #else).

It is not necessary to define all the variables and constants
explicitly in the same file as the basic type specifiers. It is
not even necessary to have them all in a single text file.
The SDU parser allows the user to specify the name of the
file or files containing the definitions instead of the defini-
tions themselves. Given the name of the file bracketed by
percent signs (%nameo/"), the SDU parser will open the
specified file and load the definitions. This feature allows
the variable and constant definitions to be used directly
by the C programs since any special SDU symbols can be
restricted to the input specification file and do not have
to be put in with the types.

Ilefault Information
The SDU provides routines that allow applications to

create data buffers based on definitions loaded in the dic-
tionary. These buffers can then be used by the applications
for various purposes such as testing, debugging, and vali-
dation. The SDU provides mechanisms for storing default
values for the data definitions in the dictionary. The default
values can then be loaded into the data buffers created for
the applications. The default information is loaded at the
same time as the data definitions using the format:

definition name : default value;

The definition must have already been loaded into the
dictionary. If the definition name is an item within a struct
or union type then it must be fully qualified.

Creating the Dictionary
The data dictionary is created by the sdu.build program

from the C include files. Depending on the amount of infor-
mation to be processed, the creation of the dictionary can
be a time-intensive task. So that every application does not
have to incur this overhead cost each time it wishes to
access the dictionary, the sdu.build program is run as a stand-
alone program. The sdu.build program must be run whenever
new data definitions are to be added to a dictionary. Once
the dictionary is created, the dictionary can be accessed
by multiple applications.

Building the dictionary is a two-step process. The first
step is to create the dictionary in the internal memory of
the sdu.build program. As the data declarations are read they
are loaded into the internal tables and data structures of
the dictionary. The SDU compiler is responsible forreading
and verifying the input definitions and loading the informa-
tion into the tables. Each #define constant and data declara-
tion will have at least one entry in a table (strucVunion data
types have one entry for each element defined as part of
the strucVunion declaration). Any errors encountered during
the processing will cause the program to terminate and

display an appropriate message. The second step is to save
the table information from the internal memory into some-
thing more accessible by the user applications. Once the
dictionary has been successfully loaded the memory image
is written to an HP-UX disk file. The name of this file is
specified in the run string when the sdu.build program is
executed.

Accessing the Dictionary
Applications planning to use the data dictionary must

link with the dictionary interface library. This library con-
tains all the routines for accessing information stored in
the dictionary. The first library call made by the application
must be the one to load the dictionary information from
the disk file into the application's internal memory. The
application passes the name of the dictionary file to the
load call. The load routine allocates memory for the dictio-
nary and reads the data into memory. The amount of space
required was writterr to a header record in the disk file by
the build program. The dictionary loaded is now an exact
copy of the dictionary created by the sdu.build program.

The load routine performs one more task before the data
can be accessed by the calling application. The internal
design of the dictionary requires numerous pointers to link
various pieces of information together. These pointers,
which are really just memory addresses, are valid only in
the original memory space where the dictionary was
created. Although the system call malloc is used in both the
build and the load processes, it cannot be guaranteed that
the memory obtained from the call will be in exactly the
same address location each time. Therefore, the internal
pointers must be modified to reflect the location of the data
in the new address space.

The pointers are adjusted by comparing the load address
and the build address (which was stored in the image file).
The required pointer adjustment is the difference between
the starting address for the build and the starting address
of the internal memory for the load. This adjustment value
(positive or negative) is added to all pointers in the internal
dictionary structures. When the pointers are adjusted the
load process is complete and the dictionary is ready for
use by the application.

Developing sdu.build
Developing a program that can recognize C-language data

declarations in all forms is akin to writing a mini version
of the C compiler. Development of the SDU parser/compiler
program sdu.build would have been a formidable task had
it not been for the tools yacc and lex available under the
HP-UX operating system.2 Yacc is a generalized tool for
describing input to programs; it imposes a structure on the
input and then provides a framework in which to develop
routines to handle the input as it is recognized. The parser
generated from yacc organizes the input according to the
specified structure rules to determine if the data is valid.
Lex is used to generate the lexical analyzer, which assembles
the input stream into identifiable items known as tokens,
which are then passed to the parser. Lex has its own set of
rules called regular expressions,3 which define the input
tokens. Regular expressions are patterns against which the
input is compared; a match represents a recognized token.

FEBRUARY 1990 HEWLETT-PACTNRO IOUNIIIT 61

The parser and lexical analyzer are combined to create the
SDU compiler known as sdu.build.

The first step in using yacc is to define the set of rules,
or grammar, for the input. A grammar specifies the syntactic
structure of a language, with the language in this case being
the C data declarations. The syntax is used to determine
whether a sequence of words (or tokens) is in the language.
Describing the syntax of a language is not as hard as it
sounds. A notation known as Backus-Naur form (BNF)4

already exists for specifying the syntax of a language. Con-
verting the C data declarations to BNF was simplified by
the fact that a partial grammar already existed.3 Elements
not supported by the SDU were eliminated from the gram-
mar.

The qrammar consists of a sequence of rules. A rule is
writ ten with a left-hand side and a r ight-hand side sepa-
rated by a colon. The left-hand side consists of a single
unique symbol called a nonterminal. The right-hand side
consists of a sequence of zero or more terminals and non-
terminals sometimes cal led a formulation. One or more
formulations may appear on the r ight-hand side of a rule.
A rule must exist for every nonterminal symbol. Terminal
symbols, which are synonymous with tokens, are not de-
fined further in the grammar but are returned from the
lexical analyzer. Examples of grammar rules used for de-
scribing some simpli f ied mathematical expressions are:

expression : pnmary

|
' ('expression') '

|
'-'expression

I expression'+'expression

I expression'-'expression

I expression'-' expression

I expression'/'expression

primary : identifier

I constant

The symbols expression and primary are nonterminals while
identifier and constant are terminals. Values enclosed in single
quotes are literals and must be recognized from the input
stream along with the terminals. The vertical bar (l) means
"or" and is used to combine formulations for the same
nonterminal symbol. The nonterminal symbol on the left-
hand side of the first rule is called the start symbol. This
symbol represents the most general structure defined by
the grammar rules and is used to denote the language that
the grammar describes.

Once the grammar is defined in BNF, it is a very simple
process to convert it to a form that is acceptable to yacc.
Because terminals and nonterminals look alike, yacc re-
quires terminals to be defined using the "/otoken statement
in a declarations section ahead of the grammar. Any gram-
mar that involves arithmetic expressions must define the
precedence and associativity of the operators in the decla-
rations section to avoid parsing conflicts. Some additional
punctuation, such as semicolons (;) at the end of each gram-
mar rule, and double percent signs (zz.) to separate the
declarations section from the grammar, must also be added
before the file can be processed by yacc. With these modifi-
cations the specifications can now be turned into a C pro-

62 riewLerr-pncrARD JoUBNAL FEBBUARY 1 990

gram by yacc that will parse an input stream based on the
grammar rules.

The function of the lexical analyzer is to read the input
stream a character at a time and assemble tokens from the
unstructured data. Tokens can be anything from operators
to reserved words to user-defined constants and identifiers.
Separating the tokens can be any number of white-space
characters (blanks, tabs, and line separators), which are
typically ignored. The most time-consuming part of creat-
ing the lexical analyzer is defining the regular expressions,
or patterns, which are used to recognize the input tokens.
The patterns must be general enough to recognize all forms
of the tokens and yet be specific enough to exclude tokens
that are not of the desired class. The syntax for defining
regular expressions is similar to the pattern matching fea-
tures found in most editors. A pattern to match C identifiers
might look l ike:

lA - Za - z-)[A - Za - zO 9_]*

C identifiers start with a letter or underscore followed
by an arbitrary number of letters, digits, or underscores. In
the case where a token matches more than one pattern, lex
attempts to resolve the conflict by first choosing the pattern
that represents the longest possible input string, and then,
i f the confl ict st i l l exists, by choosing the pattern that is
Iisted first. Once a pattern is matched, lex executes any
action associated with the pattern. Actions can be specified
along with the patterns; they consist of one or more lines
of C code that perform additional processing on the tokens.
For example, when an identifier is recognized it can be a
user-defined value or a C reserved word such as typedef or
struct. The action associated with the identifier pattern can
be used to search a table of reserved words to determine
the type of identifier found. This information can then be
returned to the parser along with the token.

Using the lexical analyzer and the parser as just de-
scribed, we now have a program that will read and validate
the input data. There is still one more step before this
program can be used to create the data dictionary. Now
that we know the information is acceptable we have to do
something with it. This requires going back to the specifi-
cations for yacc and adding actions for each grammar rule.
The actions consist of one or more C statements that are
performed each time a rule is recognized. Unlike the lex
actions, these actions may return values that can be accessed
by other actions. They can also access values returned by
the lexical analyzer for tokens. In the sdu.build program, the
purpose of the yacc actions is to load the C data declarations
into the internal structures of the data dictionary. With the
addition of the yacc actions the sdu.build program is now
complete.

Software Diagnostic Program
The software diagnostic program (SDP) is an interactive

application program that runs under the HP-UX operating
system on HP 9000 Series 800 computers. It provides diag-
nostic and debugging features for the software downloaded
to the OSI Express card. The primary function of the diag-
nostic program is to provide a means for dynamically
accessing data structures on the card and then displaying

the data in an easily readable format. The SDP also allows
the user to monitor certain aspects of the card's operation
and to gather and report performance related statistics.
Some of the features provided include:
I Dynamic access to card-resident data structures
r Data formatting capabilities
I Single-character commands
I Statistical displays
r Mnemonic access to global symbols
r Per-path state information displays
r Print and log functions
r Breakpoints, traps, and suspend function
r Card death display
r Dumpfile access.

The diagnostic program consists of two primary modules:
the data access routines and the user interface module. The
access routines provide the mechanisms to read and write
information between the application and the card or the
dumpfile. The user interface module handles all the in-
teractions with the user, makes the necessary access routine
calls to read or write data, and does the formatting and
displaying of information to the terminal screen. The user
interface and the data access routines were developed in
a modular fashion with a documented interface between
the two. While the library routines were originally intended
for use only by the user interface module, the interface is
designed to allow other applications access to the func-
t ions.

Data Access Routines
The data access routines provide the mechanisms for

reading and writing information between the host applica-
tion and the card or the dumpfile. The data access routines
consist of three major components: the host-resident library
routines, the dumpfile access module, and the card-resi-
dent process. The library is a well-defined set of calls that
provide the application interface to the various data access
operations. The library routines do all the error checking
on the call parameters and then route the request to either
the card process or the dumpfile access module. The library
routines decode any received responses and return the
appropriate data and status information back to the host
application program. The most important service provided
by the library routines is providing a transparent interface
to the data. The same library calls are used to access both
the dumpfile and the card.

The card process is downloaded to the card along with
the networking software. It receives messages from the host
library via an established communication channel and then
performs the requested operation on the card. Status infor-
mation and any data retrieved are returned to the host via
the same communication channel. For the card process to
be able to carry out its duties, it must operate independently
from the networking software and it must not rely on any
services provided through CONE (common OSI networking
environment). The process must also be able to interrupt
the networking operations when necessary, and be able to
operate when the networking software has died. Most of
this independence is achieved by communicating direct ly
with the backplane handler (on the card) and the driver
(from the host). This interface bypasses most of the standard

communication paths used by the networking software.
The card process manages all its own data buffers and has
no dependencies on external data structures. Also, the card
process is designed to operate at a higher interrupt level
than the network protocols. This allows the diagnostic
module to gain control of the card processor when neces-
sary.

In some debugging situations it is not always possible
or practical to access the OSI Express card directly. During
development, for example, if the card died abnormally the
developer might not be able to get to the problem for some
time. Rather than tie up the hardware for an extended
period of time or attempt to try to reproduce the problem
at a later time it is often better to save the card image and
attempt to diagnose the problem off-Iine. The facility exists
for dumping the card image to a disk file. However, most
engineers prefer something other than digging through
stacks of hexadecimal listings. In fact, the pre{erred method
is to use the same debugging tool on both the card and the
dumpfile. For this reason, the library routines provide ac-
cess to both the card and the dumpfile, the only change
being the parameters that are passed to the call that initiates
the connection. Once the connection is established, card
and dumpfile operations are identical, with the exception
that write operations are not allowed to the dumpfile. What
is going on is completely transparent to the user sitting at
the terminal.

User Interface
When developing the user interface it was important to

keep in mind some basic concepts. First, the users of the
diagnostic program would be in the process of learning
many new debugging tools such as the symbolic debuggers
on the HP 9000 Series 300 (cdb) and 800 (xdb) and the HP
64000-UX development environment at the same time. It
was important to keep the interface simple and the number
of special keys to a minimum so as not to make the learning
curve too long or steep. Also, where possible, functions or
data input operations should be handled in the same way
as the corresponding operations in the other debuggers.
Something as simple as entering numeric information
should not require users to learn two different formats.
Second, the development time for providing a useful de-
bugging tool required that the complexity of the interface
be kept to a minimum so the functionality would be avail-
able on time.

When the diagnostic is initially invoked the user is pre-
sented with a menu listing the major functional areas avail-
able, such as resource utilization or data retrieval. Sub-
menus may be displayed detailing the operations available
within a particular functional area depending on the selec-
tion on the main menu. Once a specific operation has been
selected, the appropriate screen is displayed containing
any data retrieved from the card and a list of commands
available for that display.

The user interface has a two-tiered command structure
consisting of global and local commands. Both global and
local commands are typically single keyboard characters
which are acted on as soon as they are typed (Return is not
required). Global commands are active for every display
within the program and can be entered whenever a com-

FEBFUARy 1 990 HEWLETT-pAcKARD JoURNAL 63

m e m o r y : 0 0 8 0 0 0 0 0 h - 0 0 9 f f f f f h
Add ress Da ta : (l ong)
0 0 8 3 4 3 3 8 0 0 0 0 0 0 0 0 0 0 0 r 0 0 0 0
0 0 8 3 4 3 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 3 4 3 5 8 0 0 8 4 6 a 1 4 0 0 0 0 0 0 0 0
0 0 8 3 4 3 6 8 0 0 8 4 6 a 1 4 0 0 8 4 l c a c
0 0 8 3 4 3 7 8 0 0 8 4 5 c d 8 0 0 8 4 6 a 1 4
0 0 8 3 4 3 8 8 0 Q 8 4 2 4 f c 0 0 8 4 6 a l c
0 0 8 3 4 3 9 8 0 0 8 4 5 e 3 8 0 0 8 4 6 a 1 4
0 0 8 3 4 3 a 8 0 0 8 4 6 a 1 4 0 0 8 4 5 f 1 8
0 0 8 3 4 3 b 8 0 0 8 4 5 f f 8 0 0 8 4 5 7 f c
0 0 8 3 4 3 c 8 0 0 8 8 d 2 0 c 0 0 8 3 4 4 1 c
0 0 8 3 4 3 d 8 0 0 8 3 9 8 2 0 0 0 0 0 0 0 0 0
0 0 8 3 4 3 e 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 3 4 3 f 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 8 3 4 4 0 8 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 2
0 0 8 3 4 4 1 8 0 0 9 6 6 b 5 a 0 0 8 3 4 4 3 a
0 0 8 3 4 4 2 8 0 0 0 0 0 0 8 4 2 4 8 8 0 0 0 1
0 0 8 3 4 4 3 8 2 5 1 c 0 0 8 3 4 4 5 8 a a a a
0 0 8 3 4 4 4 8 0 0 8 4 2 4 8 8 0 0 0 1 6 b 5 4

0 0 0 0 e 0 0 0
6 0 0 9 2 8 0 0
0 0 0 0 0 0 9 6
0 0 8 4 6 a 1 4
0 0 8 4 6 a 1 c
00 84 6 a14
0 0 8 4 6 a 1 c
0 0 8 4 5 a l 4
0 0 8 4 6 a 1 4
bcbcbcb c
0 0 0 0 0 0 0 0
00 00 00 00
0 0 0 0 0 0 0 b
0 0 9 6 6 f 2 6

6b 64 00 00
aaaa0 0 00
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 8 4 6 a 1 4
5 3 2 c 0 0 0 0
0 0 8 4 6 a l 4
0 0 8 4 6 a 1 c
0 0 0 0 0 0 0 0
0 0 8 4 5 a 1 c
0 0 8 4 5 a 1 4
0 0 8 4 6 a 1 c
0 0 9 6 5 9 c 8
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 9 6 6 d 4 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 9 6
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

c s t a t e : R U N N I N G
A s c i i :

. . j .

. .
^ 8

. . k z . . D :(
8 . . . D X . .
. . $. . . k d

. . o & . . m G

K O .

. . . j .
s

. . j

. . . j .

. . . J .

. . . j .
'i

. . . Y .

. (

. :

. J

. j

. j
. j

i

. . j

. . \ 1 I

_ . D

. j

D I S P L A Y : l - m e m o r y 2 - c a s t 3 : s t r u c t 4 : p a t h s t a C e s

mand is expected as input. Some examples of global com-
mands include: help (?), quit (O), shell escape (!), and main
menu (M). Local commands are specific to the display with
which they are associated and are only available when that
display is current (appearing on the terminal). The local
commands for a particular display are shown at the bottom
of the terminal screen. Local commands perform operations
such as reread statistics, reformat data, and retrieve a global
data structure from the card. While global commands are
unique for the entire program the local commands are
unique only within the associated display. The same
keyboard character may invoke entirely different functions
in different displays.

The software diagnostic uses the HP-UX cursess screen
control package to create displays and handle all interac-
tions with the terminal. Curses is designed to use the termi-
nal screen control and display capabilities. Briefly, curses
uses data structures called windows to collect the data to
be displayed. The application program writes the data to
be displayed to the current window and then makes the
appropriate curses calls to transfer the window to the termi-
nal screen. The primary benefit of using curses is that it
relieves the application of the overhead of dealing with

m e m o r y : 0 0 8 0 0 0 0 0 h - 0 0 9 f f f f f h

0 x 8 3 4 3 3 8 b m i _ g l o b a l s t : s t r u c t (
m o d _ g l o b s : s t r u c t (

v a l i d _ d r a i n _ 1 i s t : 0 ;
n o d u l e _ i d : O x l ;
t r a c e _ m a s k : 0 ;
l o g _ m a s k - 0 x e 0 0 0 0 0 0 0 ;
d i a g _ n a s k : 0 ;
m o d _ g l o b _ s t a t s - s t r u c t (

i t e m _ p t r : 0 ;
i t e m s i z e - 0 :

) ;
c a n o n i c a l a d d r : 2 4 5 8 5 ;
p a r h _ r e p o i r _ p i d - " (" (0 4 0)
n m _ r e q _ r t n : 0 x 8 4 6 a 1 4 ;
nm_even t_ r t n - 0xB46a l4 ;

t ;
p r o t o _ g 1 o b s : s t r u c t {

s a p _ t _ a d d r : 0 ;

P r e s s R e t u r n t o c o n t i n u e , S P A C E t o

64 rewlerr-pncrARD JoURNAL FEBRUAFy 1990

5 : c a r d i n f o (+) : n o r e

Fig. 3. Raw-form display of data
retrieved from the card.

different terminal types and cursor movements. It also
minimizes the amount of information that must be redis-
played on the screen by only transmitting the text informa-
tion that has changed from the previous display.

Data Access Operations
The data access operations are all functions and com-

mands for accessing, formatting, and manipulating infor-
mation from the card. As with most debuggers, the ability
to view data is one of the most frequently used. Data re-
trieved from the card can be displayed in two forms: raw
and cast. In raw form (Fig. 3) the data is displayed in col-
umns of four-byte integers. The first column is the RAM
address of the first byte of data in each row. The address
and data values are hexadecimal. The right two screen
columns contain the ASCII representation of each byte of
data in the row if it is printable. If the byte is not a printable
character then a period is shown as a placeholder. The user
also has the option to change the data format from hexadec-
imal to decimal and from four-byte integers to columns of
two-byte words. The NEXT and pnEvtOUS functions can be
used to page through memory from the initial display ad-
dress.

c s t a t e : R U N N I N G

Fig. 4. Cast-form display of data
retrieved from the card.s t o p

The second form of data formatting is the cast function.

The data retrieved from the card can be displayed based

on a specified C data type (Fig. 4). When the cast function

is selected the user is prompted for the RAM address from

which to retrieve the information and the name of a data

type, which will define the formatting of the data. To use

the cast function the specified data type must be in the

SDU data dictionary and the dictionary must have been

loaded into the user interface module. The data type is

displayed and the information is formatted based on the

data type. Data can be reformatted simply by specifying a

different data type. If the data type exceeds a single screen

the user is allowed to page through the displays. The user

can switch between the raw and cast displays without hav-

ing to reread the data from the card.
Address values can be entered in either numeric or

mnemonic forms. Numeric addresses can be either hexa-

decimal, decimal, or octal values. Mnemonic addresses are

entered by typing the name of a global variable or proce-

dure. C variables and procedure names must be preceded

by an underbar (-) while assembly variables and labels may

or may not require an underbar depending on how they

are declared in the code. The address value is obtained by

searching the linker symbol file (.1), which corresponds to

the download file on the OSI Express card. In addition to

other information, the symbol file contains global symbol
records,u which provide the names of global symbols (vari-

ables and procedures) and their relocated addresses. The

address stored in the file for the symbol entered is then
used to retrieve the information from the card. Use of the

mnemonic address is recommended whenever possible.

Not only does it eliminate the need to look up the address
of the variable in the first place, it ensures that the address

will be correct regardless of the version of the card software

being accessed.
One level of addressing indirection can be accessed by

preceding the address values, either numeric or mnemonic,

by an asterisk ('). The address location on the card is then
interpreted as containing the address of the data to be re-

trieved. In other words, the address specified is really a
pointer to the data rather than the data itself. All address
values, either direct or indirect, are checked to ensure that

m e m o r y : 0 0 8 0 0 0 0 0 h 0 0 9 f f f f f h

they are in the range of accessible addresses on the card.
Both read access and write access are allowed to RAM
memory, whi.le only read access is permitted to EEPROM

addresses.

Card Death Display
Whenever the OSI Express card dies abnormally, either

from a software exception (address error, divide by zero,
etc.) or an internal error (disaster log), or is halted from

the host, a fatal error routine is invoked on the card to save
the state of the card processors and record the error infor-
mation at the time the card halted. The routine also sends

an error indication to the host which reports that the card
has died. During development and testing these situations
were common. At such times, the process of gathering the

data to determine why the error occurred can be time-con-
suming and involved. The type of error and even the size
of the RAM memory can influence the location of the infor-

mation to be read. Once the error is known a text file must

still be searched to determine the meaning of the error.
The card death information display attempts to provide

on one screen all the error information necessary to deter-
mine where and possibly why the card died. The diagnostic
program gathers the information concerning the card death
from the various memory locations and, after analyzing the
data, displays on the screen the values that relate to the
type of death that occurred (Fig. s). The processor registers,

including the stack pointer, the program counter, the status
register, and the data and address registers, are retrieved
and displayed in the center of the screen. When a card

module dies gracefully it stores information in a disaster
record. This information is retrieved, if available, and dis-
played at the bottom of the screen. The program also

evaluates the error and supplies an apparent reason, or best
guess, as to why the card died. On this screen the user
should have enough data to understand why the card died
and be able to locate any additional information.

Resource Utilization
The displays available under the resource utilization

selection are intended to provide information on the oper-
ational state of the various modules and resources on the

c s t a t e : R U N N I N G

s t a t u s R e g : 2 0 0 4

0 0 9 f 0 0 0 0 0 0 8 2 0 0 0 0 0 0 0 0 0 6 0 0
0 0 2 0 0 0 0 0 0 0 2 0 3 c 4 2 0 0 9 f f 5 b c

T y P .
T y p .

0
0

o f
o f

D e a t h : c m d . s t o p i s s u e d
E r r o r : 0

S u b s y s I d
L o c a t i o n

A p p a r e n t R e a s o n : C a r d s t o p p e d f r o m h o s t

P R O C E S S 0 R R E G I S T E R S (S F c m d s L o p _ C P U _ r e g s)

S t a c k P t r : 0 0 9 f f 5 b c P r o g r a m C t r : 0 0 8 4 9 8 4 4

D 0 - D 7 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 4 0 0 0 0 0 0 d f 0 0 0 0 1 a 8 8 0 0 8 2 1 0 e 8
A 0 - A 7 0 0 4 0 0 0 1 8 0 0 8 3 a 0 6 6 0 0 2 0 8 c 6 8 0 0 8 3 3 1 8 8 0 0 0 0 8 0 9 0

D I S A S T E R R E C O R D
C u r r e n t M o d u l e :
C l , r r a n t R c o i n n '

F l a g s :

D I S P L A Y : l : m e m o r y

0
0
0

r so
M \ ' 6 h f r 1 ' P n i n r o r '

E v e n t P o i n t e r :
F r r a n f I a - o t h

0
0
0

Fig.5. Card death display.

FEBRUARy 1990 HEWLETT-pAcxano louRner 65

2 : c a s t 3 : s t r u c t 4 : p a t h s t a t e s 5 : c a r d i n f o (+) : n o r e

F l o w C o n t r o l

CONNECTI ONS
A c t i v e I n b o u n d :
A c t i v e O u t b o u n d :
A c t i v e R e t r a n s :

THROUGHPUT
C a r d C P U P a c k e t s
C a r d C P U P a c k e t s
T h r o u g h p u t B y t e s
C . r . l M 6 m ^ r \ / n , , r

C a r d T h r o u g h p u t

}4EMORY MANAGER
A v a i l a b l e B L O C K S
A v a i l a b l e L A R G E
Ava i l ab l e SMALL
A v a i l a b l e T I N Y

' ' : R e a d s t a t s

I
1
1

c s t a t e : R U N N I N G

ERAS
E r a B o u n d a r i e s : 4 5 7
E r a s M e m o r y T i g h t : 0
E r a s C P U T i g h t : 0
E r a P e r i o d : 1 0 0 0

I n :
O u t :
I n :

B y t e s : 0

1 0 0 0
1 0 0 0
1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0

S c a l e d
1 0 0 0
1 0 0 0
1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0

Ac tua 1
0
0
0
0

o n F R E E L I S T :
b u f f e r s e g m e n t s :
b u f f e r s e g m e n t s :
b u f f e r s e g m e n t s :

1 : R e a d a n d C l e a r

5 2
3 1 3
1 s 8 1
2

Z:CIeax

OSI Express card. For the most part, the displays contain
various combinations of statistics gathered from the card
that can be monitored to determine such things as
throughput, flow control (Fig. 6), and memory utilization
(Fig. z). There are basically two types of statistics that are
maintained; cumulative and actual. The cumulative statis-
tics represent values that have accumulated over a time
period. Examples of cumulative statistics include front-
plane packets transmitted, number of global retransmis-
sions, and backplane bytes transferred. These statistics can
be cleared to zero by the user. Actual statistics reflect the
conditions as they currently exist on the card. Number of
open connections, available buffer manager memory, and
scheduler queue depth are examples of actual statistics.
Actual statistics cannot be cleared.

Trap/BreakpoinVSuspend
When attempting to debug problems on the card it is

often necessary to stop the processing on the card to

examine the current state of the processor or a global vari-

B r f f e r M a n a g e r U c i l i z a t i o n

To ta l Memory (by tes) : 164651+4
Ava i l ab l e Memory : L4303 I2
A v a i l a b l e P e r c e n t : 8 6

Ava i l ab l e BLOCKS on FREE L IST :
A v a i l a b l e T I N Y b u f f e r s e g m e n r s :
A v a i l a b l e S M A L L b u f f e r s e g m e n t s :
A v a i l a b l e L A R G E b u f f e r s e g n e n t s :

POOL MANAGER Poo11
Number o f seg rnen t s : 1
O b j e c t s p e r s e g m e n t : 1 0
O b j e c t s i n u s e : 4
O b j e c t s i z e (b y r e s) : 4 4

Sub taske r Queue Dep th : 0
LLC Inbound Queue Dep th : 0

' ' : R e a d s t a t s

66 rewlert-pncrARD JoURNAL FEBRUARv 1990

6. Resource utilization dis-
showing flow control statis-

a n d R e a d

able before continuing. The diagnostic program provides
three mechanisms for stopping the card: breakpoints, traps,
and suspend.

The breakpoint feature is similar in implementation to
breakpoints in other debuggers. The user specifies the ad-
dress of the instruction on the card where the breakpoint
should be set. When that location is reached in the process-
ing stream the card is stopped and a message is sent to the
host application, which notifies the user. The card remains
stopped until the user tells it to continue. The card then
resumes processing from the instruction at the breakpoint
location.

Traps are basically predefined breakpoints hardcoded in
the networking software that can be turned on and off as
needed. The locations of the trap calls are determined by
the code developers and can be anywhere in the executable
code. When a trap is encountered a diagnostic procedure
on the card is called. The diagnostic procedure checks the
trap type with a global mask to determine whether this
trap is on or off. The trap type is one of the parameters

c s t a t e : R U N N I N G

s e s m e n t . s i z . e ' ? 2 O
' - - ' ' 8 0r c 6 u r s r l L s r z s . +

- . - ^ . " 0 6 4
> e 6 u ' E r r L

P n n l ? T i n r r R S

2 2
3 4
228 228

Fig. 7. Resource utilization dis-
play showing memory utilization
starstics.

Fig.
play
flcs.

5 2
2
1 5 8 1
3 1 3

P o o I 2
0
6
0
/ o

passed on the trap call and is defined by the code developer.
The global mask is configurable from the user interface
module. If the trap is off then the call returns and the code
continues without any break. If the trap is on then the card
is stopped and a message is sent to the host application.
Again, the card remains stopped until the user tells it to
continue. Processing resumes from the instruction after the
trap call.

The suspend operation gives the user the ability to stop
the card at any moment in time. This is a global command
issued from the user interface. When the request is received
by the card process a routine is invoked that interrupts the
networking protocols and places the card in an idle loop.
The card timer manager interrupts are also suppressed by
this routine. The suspend will remain in effect until a re-
sume command is issued by the user. The purpose of the
suspend function is to give the user the opportunity to take
a quick look around without having data change or move
before it can be examined.

Summary
The success of these modules is evidenced by their accep-

tance as the tools of choice for much of the debugging,
diagnostic, and testing efforts. The use of these tools signif-
icantly reduced the time needed to isolate many of the
defects encountered in the card software. The statistical

displays provided valuable information on throughput and
flow control early enough in the development cycle to
allow time to make any necessary adjustments.

Acknowledgments
The following individuals have contributed to the suc-

cess of these tools through their work on either the design
or the coding of certain functions: Gerry Claflin, Steve
Dean, John Nivinski, and Chuck Black. Also, I would espe-
cially like to mention David Ching, who provided the
routines for processing the linker symbol file, and Chwee
Kong Quek for his work on the dumpfile access module.

References
1. B.W. Kernighan and D.M. Ritchie, The C Progromming Lon-
guoge, Prentice-Hall, 1g7B
2. HP-UX Concepts ond Tutoriols, Volume 3: Progromming Envi-
ronment, Hewlett-Packard Company, 1986.
3. A.V. Aho and J.D. Ullman, Principies of Compiler Design, Ad-
dison-Wesley, 1979.
4. A.T. Schreiner and H.G. Friedman, Jr.,Introduction to Compi.ler
Construction with UNIX, Prentice-Hall, 1985.
5. HP-UX Concepts ond Tutoriais, Volume 4: Device llO and User
lnterfocing, Hewlett-Packard Company, 1985.
6. File Formot Reference for the HP 6400O-UX Microprocessor
Development Environment, Hewlett-Packard Company, 1987.

Support Features of the HP OSI Express
Card
The HP OSI Express card offers event logging and tracing
to facilitate troubleshooting in multivendor networks.

by Jayesh K. Shah and Charles L. Hamer

ODAY'S STATE-OF-THE-ART automated factories
require the seamless interaction of systems and de-
vices supplied by a diverse set of vendors. To manage

this complex environment effectively and keep it operating
smoothly, users must be able to resolve problems quickly.
The HP OSI Express card incorporates several powerful
new features to aid the troubleshooter. This article high-
lights the support features of the HP OSI Express card and
illustrates their use in two troubleshooting scenarios.

Architecture Overview
The support architecture of the HP OSI Express card was

an important consideration since the development of OSI
protocols was a new area of endeavor for HP as well as for
other computer companies. Numerous communication
problems with other OSI implementations were expected.

Therefore, a superior set of diagnostic capabilities was
needed to resolve problems quickly in an I/O card environ-
ment. To achieve this functionality it was decided to extend
the host's own nodal management facilities to include the
HP OSI Express card. This design provides a single nodal
management mechanism for event logging and protocol

tracing for both host and card modules and provides the
user with several benefits. The user does not have to be
concerned whether a layer, module, or service resides in
the host or on the card. The same set of tools with the same
capabilities can be used to manage all aspects of the prod-
uct. In addition, the trace and log output from both host-
and card-based modules are identical in format because they
share a common header and terminology for describing the
severity of an error or the type of message being traced.

The OSI Express support architecture is shown in Fig.

FEBRUAFTy 1990 HEWLETT,pAcrlno ..touRnnr 67

1. The numbered arrows show the initial flow of control
and information to enable a log class (logging severity level)
and then to send log information from a card-based layer
to the file system. Log classes are controlled by the user
via the nodal management applications osiconfig and osicon-
trol. When the user enters a command to enable a particular
log class in a particular layer, a request is passed by the
nodal management application to the trace/log facility,
which validates the request and ensures that various trace/
log resources have been allocated. The request is then
passed to subsystem management services (SMS), which
provides facilities that allow the user to access management
services (parameter manipulation, statistics collection,
status, and control) and sends the request to card manage-
ment services ICMS). CMS, which is the card-based counter-
part of SMS, provides nodal and network management ser-
vices to both the host-based management applications and
the card-based protocol and system modules. After receiv-
ing the request from SMS, CMS forwards the request to the
appropriate protocol layer or system module.

When an event that must be logged occurs in a card-based
protocol layer, the event is passed from the protocol stack
to CMS which communicates through the kernel with the
log daemon. The log daemon receives the event (log) mes-
sages from the OSI Express card, obtains the system time
(timestamps the message) and formats a log call to the host
trace/log facility. Unformatted log messages are then writ-
ten to the file system. When the user reads the log file, the

trace/log formatter osidump is used. Osidump writes formatted
Iog entries to the log file or terminal.

Event Logging
Logging is used to record abnormal or unusual network-

ing events such as the receipt of an inbound packet with
invalid protocol information (remote protocol error) or a
remote system's refusal to accept a connect request. This
is different from tracing. Tracing is used to record all infor-
mation of a particular type or types from one or more layers
or modules.

Log Headers
Log (and trace) messages have two parts: the header part

and the data part. The header consists of the first eight
l ines (see Fig. 2). I t includes the t imestamp and other iden-
tifiers. The contents of the header are very important be-
cause the data in the header usually determines the format-
ting capabilities of the trace/log formatter. The data portion
of the message that follows the header contains the descrip-
tion of the event (error message text).

One of the more important fields in the header is the log
class. This is the severity of the event being logged. When
logging is enabled the severity can be selected by the user.
The user can choose to ignore event messages that are by
nature informational, but when problems occur the user
can modify the log class to obtain informational messages.
Log messages have four classes of severity: disaster, error,

Enable/
Disable

Trace/Log

!qs! -
Card

Fig.1. HP OS/Express card sup-
port architecture. The numbers
show the sequence of operations
for getting log information from a
card-based layer to the file system.

68 Hewrerr-pncKAFD JoURNAL FEBRUARy 1 990

warning, and informational. Disaster class messages are
logged when a condition occurs that could jeopardize the
integrity of the system or network. Discovering that another
system on the network is using the identical NSAP address
is one example of a disaster class event. Once a disaster
event occurs, the event is logged and the OSI Express card
is taken off-line. The next lower event classification is error
class. Errors are events that cause a user application to fail
or take extra steps to recover. This is the default log class
for most of the product's layers or modules. The definition
of an error class event put the additional burden on the
OSI Express card software developers of understanding the
end result of an event. It could only be classified as an
error once it was understood that it would adversely impact
a user application. The expiration of one connection's
transport inactivity timer is an example of an error class
event. The error class designation is not as significant for
what is included as an error as it is for what is excluded
as an error. The error class definition prevents events that
are interesting but not a problem (from the application
point of view) from being logged. This not only saves disk

space but frees the user from having to consider events
that do not affect applications. Warning and informational
class events are the next-lower-severity log classes. Warn-
ing events such as "Destination NSAP Unreachable,"
which impacts the network layer, or informational events
such as receipt of a duplicate connection request, which
impacts the transport layer, have no impact on user appli-
cations except for time loss. These events are probably
most useful for performance analysis.

Two fields in the header provide connection information:
the connection identifier (CID) and the path identifier (path
ID). The CID is used by host software to reference a connec-
tion and is returned to the user. The path ID identifies a
specific communication path on the OSI Express card and
thus serves the same purpose in the card environment as
the CID does in the host environment. From a troubleshoot-
ing perspective the path ID is very useful when problems
occur on inbound connection requests that fail before
reaching the host. In this situation, a CID will not exist
since the request does not reach connection management
and hence a CID is not issued.

Timestamp : Fr i Jun 9 1989 16:04:23.056389
Process lD :5679 Subsystem : SESSION
Uf D :4223 Log Class : ERROR
Device lD : 0 Path lD : 19
Connection lD : 1 Log Instance i 32771
Locat ion :00144
Card Time Stamp : 0x 7c50 Card Location : 0x 5000090
Previous Error : 0x f00500 Current Error : Ox 10120d31

Remote protocol error. Received an SPDU that contains an Sl which is not valid
for the current state. An S-P-ABORT will be issued. (SS00144) Reter to troubtetree
Card_o4 in the HP MAP 3.0 troubleshooting manual.

Session state vector :
Protocol state : 713 Data transter state
Remote selector :
52 65 6d 5t 74 65 00 00 00 00 00 00 00 00 00 00 Remote . . .
Reouirements : FD
Tokens available : Tokens owned :
Restart sync number : 0 Lowest confirm sync : 0
Next sync number : 0 Lowest restart sync : 0
lB expected data In : 0 lB accumulated In : 0
OB expected data In : 0 OB accumulated In : 0
XP connection : lnitiator XP connection reuse : FALSE
FN SPDU collision : FALSE DN atter FN collisn : FALSE
SSYNmrsp allowed : FALSES Activity in progress : FALSE
MAA/AEA/rx'd/tx'd : AEA XP expedited avail : TRUE
Inbound CONE state : IDLE Inbound Sl : MIP
Outbound CONE state : IDLE Outbound Sl : CN
Horseshoe reason : No_PENDING_REASON Timer reason : No PENDING_REASON
Memory get reason : No_PENDING_BEASON Abort reason : ISSUE_U_ABORT
Session version : TWO Besync kind : No resync
Top of path : FALSE Start timer : FALSE
lB intertace queue : Not Empty lB pending queue : Empty
OB interface queue : Empty OB pending queue : Empty
lB SPM queue : Empty Concatenation queue : Empty
SPDU concatenated : FALSE Category 0 Sl : DT_OB or ER
T-disc req delayed : FALSE Dequeue spdu : FALSE
T-disc req issued : FALSE
Stack 0 CONE event : T,Connect req Stack 1 CONE event : T_CONNECT cnf
Stack 2 outbound Sl : CN Stack 3 inbound Sl : AC

SPDU offset:
0:00 00 00 09 -- - -

SPDU:
0 : 3 1 0 7 0 f 0 1 0 1 2 a O 2 0 0 O 2 - - - - 1 . .

MIP Ll=2
Sync type item Ll=2
Serial number Ll=2

: Expl ic i t conf i rmat ion not required
: 0 0 0 2

Fig. 2. A formatted remote pro-
tocol error log message. There are
two parts: the header and the
data.

FEBRUARy 1990 HEWLETT,pAcreno louRul 69

Another field in the header and one of the most signifi-
cant contributions to the supportability of this product is
the log instance. The log instance is an identifier that
threads log messages together. When a module first detects
an error, it obtains a new unique log instance identifier
and logs the event. The log instance is then passed with
the error to the calling entity. If the calling entity also logs
an error as a result of processing the error it receives, it
logs the enor as well as the log instance passed to it. The
calling entity then returns the log instance to its caller. In
this manner, the log instance is propagated all the way up
to the user application. Log events with the same log in-
stance are related. The earliest event with the same log
instance is the root of the problem. Without a log instance
mechanism, a user might think that several errors had oc-
curred when in fact only one had occurred. Once the error
is returned to the user application the log instance is avail-
able via a special function call to the service interface.
Thus, the log instance provides an audit trail from the
module that first detects an error all the way back to the
user application.

Other fields in the header of interest to users include the
user identifier (UID), and the process identifier (PID). The
UID is the HP-UX user identifier of the user that created
the connection. The PID is the identifier of the process that
created the connection.

Error Messages
Special attention was focused on the content of error

messages. All error messages include the problem category,
the cause of the problem, and the corrective action recom-
mended to resolve the problem. At all points in the code
where an error might be logged, the protocol developer had
to resolve the problem and not merely report it. It was also
generally agreed to return any helpful information that was
available to the user that would aid problem resolution.
For this reason the session state vector is appended to the
error text in Fig. 2.

The product troubleshooting guide is tightly coupled to
the error messages. In Fig. 2, for example, the user is re-
ferred to troubletree Card-0+ in the troubleshooting guide.
Card-O+ is a troubleshooting procedure designed to lead
the user through the process of resolving a remote protocol
error. The technique of referring to a specific troubleshoot-
ing procedure in the troubleshooting manual is used when
the resolution procedure is longer than what could easily
be described in a log message.

In addition, since usability was of great concern, we
wanted to avoid terse log messages that required interpret-
ing to understand what transpired. Therefore, error mes-
sages were reviewed and reworked to ensure that the text
was clear. As a result of the efforts to make error messages
more usable, an error messages manual was not required
as part of the product's documentation.

CMS Informational Log
Another feature designed to aid troubleshooting is the

CMS informational log message. Recall that CMS is used
by the protocol stack and system modules to log event
messages and trace protocol and system module activity.
When CMS receives a request to log a message it checks

70 HEwLErr-pAcKARD JoURNAL FEBFUARY r 990

to see if it has logged a message on that path before. If it
has, it just performs the log or trace task requested by the
calling software module. If it has not logged a message on
that path before, it logs a CMS informational message and
then logs the message requested by the calling software
module. The informational message logged by CMS in-
cludes as much of both the local and remote applications'
presentation addresses as is known. An application's pre-
sentation address is also often referred to as its PST-N
selectors. This information is logged in the data portion of
the log message and is especially useful for remotely in-
itiated connections as is typical on server nodes. Now,
when an error occurs, information is available that provides
the presentation addresses of the affected applications.

A Troubleshooting Scenario
Two sample scenarios will illustrate the use of the trou-

bleshooting features described above. Troubleshooting
scenario 1 is shown in Fig. 3. Assume that user application
1 (UA1), an HP MMS (Manufacturing Message Service)
client, on node A wants to communicate with user appli-
cation 2 (UA2) on node B. Furthermore, assume that UA1's
connect request to UA2 fails because UA2 has a different
presentation address from the one UA1 is trying to com-
municate with. This can occur when the same presentation
address is maintained in two separate locations. For exam-
ple, a shop-floor-device OSI implementation may not pro-
vide a directory service user agent for directory access.
Instead, it may locally manage presentation addresses,
thereby providing an opportunity for address inconsis-
tency.

In Fig. 3 the dotted line represents the SAPs (service
access points) that have been activated by UAz to receive

Node A Node B

SPP = Service Provider Process

Flg.3. Troubleshooting scenario 1

requests from MMS client applications. UA1 obtains the
PST-N selectors for UA2 and sends an mm-connect request
to UA2. When the connect request is received by the trans-
port layer on node B, the transport layer finds that the
destination TSAP (transport service access pointJ is not in
its table and rejects the request. The transport layer on
node B rejects the connect request by sending a disconnect
request to the transport layer on node A. The transport
Iayer on node A logs this event. When it logs the event, it
gets a unique log instance value. The transport layer on
node A returns an error along with the log instance to the
session layer. If any other module in the propagation path
logs additional information, the log instance will be iden-
tical to the one originally logged by the transport layer. As
explained above, the log instance is a mechanism that
threads together all errors related to a specific error.

Error information returned to UA1 from the service inter-
face includes the log instance. The user can then use the
log instance as a key to query the log file for the underlying
cause of the problem. All necessary data required to resolve
the problem is logged along with the error message. In this
example, the transport layer on node A will log the discon-
nect request TPDU (transport protocol data unit) in the
data portion of the message. In this way, fault isolation and
correction are facilitated by the use of the log instance, a
detailed error message, and a comprehensive troubleshoot-
ing procedure.

Another Scenario
Fig. 4 illustrates troubleshooting scenario 2. In this

scenario, assume that an FTAM (File Transfer Access and
Management) initiator application on a remote system re-
ceives an abort indication while transferring a file to the
local HP system. Also, assume that the remote system has
limited troubleshooting capability. Thus, we need to isolate
and resolve the problem from the responder side. Assume
that the cause of the problem is that the remote system has
sent an invalid session PDU (protocol data unitJ and the
local session entity aborted the connection.

When the connection was aborted on the responder side,
a connection information message was logged by CMS with
the complete presentation address of both the initiator and
the responder along with the path identifier of the aborted
connection. To resolve the problem, the user searches the
log file for the CMS message with the appropriate initiator
and responder presentation addresses. Locating this log
message provides the user with the path ID, which can be
used as a key to query the log file for errors that occurred
on the aborted connection. The abort event message that
the user obtains informs the user that the type of problem
encountered was a remote protocol error (see Fig. 2). The
event message also specifies the exact nature of the problem:
the received PDU had an incorrect value for the session
indicator. This type of problem is typically caused by a
defect in the remote vendor's code and can be resolved
only by a code change in the remote vendor's implementa-
tion. Therefore, the corrective action in the error message
tells the user to follow a procedure that recreates the prob-
lem with tracing turned on. The additional trace informa-
tion will help the remote system's vendor understand the
context in which the problem occured so that an appro-

priate fix can be made.

Tracing
Tracing is used to record all activity of a specific kind.

It provides the contextual information that may be neces-
sary to determine the cause or the activities that led up to
a networking event. Both normal and abnormal events are
recorded and, in fact, the trace utility cannot distinguish
between the two. Tracing is a very useful tool for isolating
remote protocol errors (interoperability problems) or inter-
nal defects.

Typically, a troubleshooter uses network tracing as a last
resort to identify a problem. This is because configuration
problems and user application problems are much more
common, and because the use of trace tools and the analysis
of the output require significant expertise. A major prob-
lem, therefore, is knowing when to use tracing. The log
message in troubleshooting scenario 2 is typical of remote
protocol error log messages generated by protocol modules.
The message is intended to define the problem clearly and
guide the troubleshooter to a procedure to isolate it.

The user can enable several types of tracing for each
subsystem. The most commonly used trace kinds are listed
below.
I Header Inbound. Traces protocol headers received from

the next-lower protocol layer before decoding is done.
I Header Outbound. Traces protocol headers after encod-

ing is complete before they are sent to the next-lower
protocol layer.

I PDU Inbound. Traces the whole protocol data unit as it
is received.

I PDU Outbound. Traces the whole protocol data unit as

Remote System Local System

SPP = Service Provider Process

Fig.4. Troubleshooting scenario 2

FEBRUARv 1990 HEwLETT-pAcKARD JoURNAL 71

it is being sent.
r State Trace. Traces protocol state information.

A fundamental problem with tracing in general is that
the person analyzing the trace file must recognize an abnor-
mal event and so must have a fairly intimate knowledge
of the protocol. The logging trace is a special trace type

that writes a copy of the log message to the trace file. For
instance, when tracing is enabled at the transport layer and
this layer logs a message, that message is written to the log
file (this is normal) and also to the trace file. The logging

trace message acts as a marker within the trace file to help
the person analyzing it locate the area of interest.

Acknowledgments
We are grateful to Mike Wenzel for his patience and for

helping us evaluate various technical alternatives. Rich
Rolph was instrumental in the development of usable error
messages and troubleshooting procedures. We would like
to thank the entire OSI Express team for suggesting and
implementing supportability and usability features.

Integration and Test for the OSI Express
Card's Protocol Stack
Special tesf lools and a multidimensional integration
process enabled engineersto develop, tesf, and debugthe
firmware for the OSI Express card in two different
environments. ln one environment an emulation of the OSI
Express card was used and in another the real hardware
WAS USCd,

by Neil M. Alexander and Randy J. Westra

HE OSI EXPRESS PROJECT consisted of many inde-
pendent project teams (made up of one or more en-
gineers) working on specific portions ofthe protocol

modules or support code. Each team needed the ability to

test and develop code independent of others. However,
periodically they needed to have a set of stable and tested

code from other teams to enable them to test their own
code. Since each engineer was involved in testing, test
environments were designed to maximize their efforts. One

environment consisted of an emulation of the OSI Express

card on the development machines and another test envi-
ronment consisted of a real OSI Express card connected to

a target machine. Both the target and the development
machines were HP 9000 Series 800 computers running the
HP-UX operating system. Because of the number of en-
gineers working on the project, multiple development and
test machines were configured as a network. These test and
development environments are shown in Fig. 1.

Test Architecture

Each protocol module was first tested in isolation before
the module was integrated with the rest of the modules of
the OSI Express stack. The CONE fcommon OSI networking
environment) protocol module interface facilitates this
module isolation since a stack can be built that does not
contain all seven protocol modules. Protocol modules do

72 HEWLEII-pAcKARD JoURNAL FEBRUARY 1990

not call each other directly to pass packets but instead
make calls to CONE. A data structure called a path report
is used to specify the modules configured into a stack.
Protocol modules not specif ied in a path report wi l l not
be called by CONE and do not need to be in the stack.
However, even with this modular design, several test mod-
ules are needed to test the stack fully.

The architecture and the modules involved in testing the
OSI Express card firmware are shown in Fig. 2. This archi-
tecture was used on the host (running in user space) to test
and debug protocol modules before the hardware was
ready. When the hardware was ready, this same architec-
ture was used on the target machines to test the protocol

modules in the real environment.

Exception Generator
The exception generator is a test module that is config-

ured in the stack below the module being tested. Packets
moving inbound to the protocol module under test and
moving outbound from the module are operated on by the
exception generator. Packets not operated on by the excep-
tion generator are simply passed through to the next layer.

The exception generator can intercept, modify, generate,

or discard packets as they are moving up or down the stack.
Packets intercepted are placed in the exception generator
packet queue. Up to ten packets can be saved in the queue

at one time. Packets stored in this queue can be modified

and then sent up or down the protocol stack. In this way,
PDUs that occur rarely can be constructed. Also, errors in
transmission can be simulated by corrupting a packet in
the queue and then sending it.

Scenario Interpreter Agent
The scenario interpreter agent performs functions similar

to the exception generator. Whereas the exception
generator is configured below the module under test, the
scenario interpreter agent is positioned above the module
under test. The scenario interpreter agent operates on in-
bound packets coming from the module under test and
outbound packets going to the module under test. A packet
can be intercepted as it moves down the stack and placed
in the packet queue of the scenario interpreter agent. A
saved packet is sent to the module under test by releasing
it from the save queue of the scenario interpreter agent.

Bounce-Back Module
The bounce-back module sits at the bottom of the stack,

and as its name implies, it enables packets heading down
the stack to be sent (bounced) back up the stack. Normally,
a protocol stack runs in a two-node configuration consisting
of a sender and a receiver with the two nodes connected
by a communication medium such as coax cable. When

testing of the protocol stack first started, all testing was
done in a single-node configuration. Packets were sent
down the stack, turned around by the bounce-back test
module, and then sent back up the stack. To make one
stack act as both the incoming and the outgoing protocol
stacks, the bounce-back module maintains a set of tables.
The tables contain the proper inbound CONE call for each
outgoing CONE call.

The bounce-back module makes different calls to CONE
depending on which layer is configured above it in the
stack. Thus, a separate table is maintained in the bounce-
back module for each protocol layer that may be above it.
For example, a stack can be configured for testing that
consists only of the session layer above the bounce-back
module. The session layer is a connection-oriented pro-
tocol layer and receives different incoming CONE calls
than a connectionless layer such as the network layer. In
this example, a packet would flow outbound from the ses-
sion layer and be received by the bounce-back module.
The bounce-back module would look in the session table
to find the corresponding incoming call for the session
layer. The packet would be copied and sent back up to the
session layer, which would accept the incoming call as if
it were part of the receiving node in a two-node test.

Development
Machines were used
to develop and
test code using
an emulation
of the OSI Express/Card.

Proiecl servers
stored code and test
suites and produced
integration directories.

Source
Under
RCS

Test
Suites

h-i-
gration
Code

Target machines were
used tor testing the
OSI Express card.
Card downloads
and tesls were
obtained from
the proiect servers.

Fig. 1. OS/ Express card testing environments.

FEBRUABY 1 990 HEWLETT.PACXNNO .,IOURNNL 73

Error Handling
Every CONE call returns an error value to the protocol

module making the call. Normally, the exception generator
and the scenario interpreter agent would simply propagate
the error value returned to them to the next layer. However,
the error value returned can be changed by the test modules.
In this way error paths can be executed in the protocol
modules for unusual error return values from CONE calls.
Since the bounce-back module is at the bottom of the stack
and cannot propagate error return values, tables were used
as explained above for the return value of each CONE call.

Scenario Interpreter
To generate packets to send down the stack, the scenario

interpreter is used. Scenarios are test specifications that
tell the scenario interpreter what packets to send and what
packets to expect to receive. Each scenario has two sides,
which can be thought of as a sender and a receiver. Packets
are defined using packet definition commands. These con-
structed packets are sent down the stack using packet send/
receive commands. A parameter tells the scenario interpre-
ter whether to send or expect to receive a packet. When a
packet is received it is compared to the packet specified
in the scenario. If the packets do not match, an error is
reported. Repeating sequences of data are generated by
macros in the scenario interpreter. For example, a repeating
sequence of 5000 bytes is generated with the simple macro
15000. The value of each byte is one greater than the previous
byte, modulo 256.

The scenario interpreter also controls the exception
generator, bounce-back module, and scenario interpreter
agent test modules, Commands to these test modules are
sent down the protocol stack in special command packets.
Command packets are created in the same fashion as data
packets. A parameter indicates whether the packet is a data
packet or a command packet. The command packets are
absorbed by the test module they are intended for. A test
module can also send a command packet to the scenario
interpreter. For example, the scenario interpreter can send
a command packet to the exception generator telling it to
signal the scenario interpreter when a certain number of
outbound packets have passed through the exception
generator. After sending the packet, the scenario interpreter
waits for a response. When the exception generator deter-
mines that the specified number of packets have passed
through, it sends a command packet to the scenario in-
terpreter telling it that the specified number of packets
were sent, After the scenario interpreter receives the ex-
pected response it can then proceed. The scenario interpret-
er can also wait for inbound packets to pass through a test
module.

This interaction between the scenario interpreter and the
test modules is used to test the many states of a protocol
layer. One example is the session layer. Several special
packets that the session layer sends to its peer on another
machine are preceded by a prepare packet. The two packets
are sent one after the other (prepare packet followed by a
special packet). However, some states in the session pro-
tocol state machine are only entered when a data packet
is sent after the prepare packet is received but before the
special packet is received (see Fig. 3). To test this case, a

74 HEWLFTT-PAoKARD JoUBNAL FEBRUARY 1990

prepare and special packet combination is sent down the
stack. The special packet is caught and saved by the excep-
tion generator. On the receiving side the scenario interpre-
ter waits to receive the prepare packet. After receiving the
prepare packet, the scenario interpreter sends a data packet
and the receiving side enters the desired state. Finally, the
special packet previously captured by the exception
generator is released. Without this kind of control, hitting
the desired state on the receiving side would only result
as a matter of chance.

Another example of packet timing involves the transport
layer. The transport layer receives acknowledgments from
its peer on another node for the packets it sends. The timing
of these acknowledgments is not deterministic. Testing all
the transport protocol states requires sending certain pack-
ets after an acknowledgment is received. To send a packet
after the transport layer receives an acknowledgment re-
quires the scenario interpreter to wait for the exception
generator to signal that the acknowledgment packet has
arrived.

The scenario interpreter interfaces to the stack via the
test harness. The test harness operates in the two different

Test Results

Scenarios

Packet Oueue

Packet Queue

Packets are
turned around
and sent back up.

Fig.2. Architecture for testing protocol modules

environments. In the environment where the stack is actu-
ally running on the OSI Express card, the test harness uses
a tool called UL-IPC (upper-layer interprocess communica-
tionJ to communicate with the card. In the user space en-
vironment on the development machine, the test harness
uses shared buffers (HP-UX IPC) to communicate with the
protocol stack which is also running in user space. Fig. 4
shows these environments.

Integration Process

System integration in its simplest form is the process of
creating a set of deliverables (e.g., executable product code,
test code, etc.) from some source code. For the OSI Express
card the integration process was driven by project goals,
project size, and environment.

Goals and Results
The integration process for the OSI Express card was

designed with follow-on products in mind. CONE
exemplifies how this works. CONE allows the protocol
modules to be combined in different ways to create new
protocol stacks. The integration process also needed the
ability to produce additional products without modifica-
tion to the build process. Like CONE, this involved combin-
ing existing code in new ways to produce additional prod-
ucts. The whole problem can be thought of as multidimen-
sional, in that the integration process for the OSI Express
card needed to run in a multiple-machine environment,
where there were multiple products, each product having
multiple versions, each version's code subject to compila-
tion in multiple ways.

The challenge was to create a process that would run
effectively in a network environment, supply timely and
accurate integration services, and be flexible enough to
produce all the targeted outputs required. Other goals for
the integration process included quick response to changes
by developers, sufficient tracking to create a history of the
events that occurred during any given integration, and pro-

*Test Case

Fig, 3. Session state machine for the prepare packet and
special packet scenario.

duction of metrics for managing the project.
Although the integration process was modified over

the course of the project, what eventually developed was
a set of structures and concepts that make integration in
this multidimensional environment possible. A successful
integration for a given version of a product produced a
download file that was able to run on the card, an emulation
testing environment to run on development machines, and
host-based tools to run on the host machine housing the
card. The test environments were similar in that they used
the same set of source code to build from. They were dif-
ferent in the deliverables that came out of the environment
and the compilers required to produce them. The deliver-
ables for each of these environments was built separately
in its own integration directory. These integration direc-
tories were built in a standard way so that they had the
same look to the build processes regardless of the type of
deliverables being built. Standardization of integration di-
rectories made it easy to support multiple products, ver-
sions, and types of compiles. Having an integration direc-
tory with a standard structure residing in a known direc-
tory, it was easy to build tools that performed their func-
tions simply by being passed only the name of the integra-
tion directory. The flexibility to perform different types of
integrations within the integration directory came from the
control files (inputs to HP-UX scripts) contained within
each integration directory. This information included what
source to use, what to build, and compiler options. The
integration scripts could then use these files to determine
exactly what needed to be done for a particular integration
space.

The Process
To get a better understanding of how the integration pro-

cess functions, let's see what happens when a a new version
of a source code module is added to the system. Fig. 5
shows the data flows between some of the components

(a)

Target Machino

Test Harness

Fig.4. (a) fest harness in user space. (b) fest harness used
with the real OSI Express card.

Data -l} special
F d L r c , . - '

Test Harness

(b)

FEBRUARY 1 990 HEWLETT-PACKARD JoUBNAL 75

involved in the integration process. Assume that a de-
veloper would like to make a bug fix to an existing inte-
gration. The first step would be to check out the source
code using the HP-UX revision control system (RCS) and
put it into a directory on the development system. The
specific version is identified by an RCS tag. The RCS tag
associates a name with a revision number, so in this case
the developer would check out the source code using a tag
that is associated with the integration version in which the
bug is being fixed. The developer would then make the
changes necessary to the source, compile it, and test it
using a standard test suite that uses code from the integra-
tion directory associated with the change. After the change
has passed testing in the emulation space it can be checked
back into the common source directories. At this time the
new versions are tagged to indicate that they are the latest
tested versions and are ready to be integrated. This tag
serves as a communication vehicle to tell the integration
process that a new version of some module needs to be
brought into a specific set of integration directories.

Within each integration directory, a source map contains
the name, version, and location of each piece of source
code that is needed for a specific integration. The location
serves a dual role in that it is the subdirectory path within
the source directory of where to get the source code and
it is the subdirectory path of where the code belongs within
the integration directory. An updated version of this map
can be generated by finding out which version of a file
needs to be used. To do this a process is run that selects
a version of the code to use based on one or more tags. In
this case the tag that the developer put on the code would

be used. When the module that was updated is looked at,
the process would discover that a new version of the file
is now needed and a new source map would be created to
reflect these changes. The next step would be to place the
conect version of the source code into the appropriate di-
rectory within the integration directory, This process is
accomplished by using the source map previously gener-
ated to direct RCS as to what version to check out and
where to put it. Other checking is done at this point to
make sure the source code residing in a directory is actually
the version specified by the source map.

Once valid source code has been placed in an integration
directory it is compiled or assembled as required to create
relocatable object files, which are then linked into a library.
The compiler to use is determined by parsing the integra-
tion directory name. Based on a subfield within the name,
one of three compiles is chosen: Express card downloads,
host-based debugging tools, or card emulations. Each of
these types of integration requires that a different compiler
be used. The scripts that perform this process verify that
the compiler or assembler needed is available on the
machine that they are being run from. The compiler or
assembler options needed are collected from three loca-
tions.
r Options that are specific to the compiler being used are

contained in the script that calls the compiler.
I Options that are specific to a library being built come

from a control file that describes the name of the library
to build, where to build it, where the source can be
found, and what compiler options are needed.

I Options that apply to all compiles within an integration

fr""o"o
I Source

lFires
I

Proiecl Source
Files

All Versions
Stored with RCS

Fig.5. Data flow for the portion of the OSI Express card integration involved in extracting the
desired source filesfrom the project source directory and building the new objectfiles, download

files, and logging files.

76 newgrr-pncxaRD JoURNAL FEBRUARY 1990

Process
Management

Log File

directory come from a global flags file.
These three sets of options are combined and passed to

the compiler. Note that since the global flags file and the
file that describes how to build libraries are both contained
in the specified integration directory, they are unique to a
particular integration.

After all the libraries are built other types of targets can
be built. These could be programs or downloads depending
on the type of integration directory. Again there are control
files that specify what target outputs to build, where the
inputs can be found, the tool that needs to be called, and
where to store the result. If the above steps have all run
successfully then the integration directory is again up to
date and ready for use by the rest of the team.

The mechanism used to deliver an integration to develop-
ers is network mounting. Mounting allows a given machine
to have access to another machine's files as if they were
stored locally. This method avoids the problem of develop-
ers working with out-of-date copies of an integration, and
provides immediate availability of an updated integration
to all developers.

Data Logging
Since there is a standard set of scripts that provide inte-

gration build services, inclusion of consistent logging and
error handling was straightforward. The scripts log infor-
mation to four different log files.
Error Log, The most detailed log contains the warning mes-
sages and compile errors generated from calling compilers
and other tools needed to produce the target outputs. This
file also contains separators indicating what was built and
whether or not the process was successful.
Process Log. The process log is a process summary indicat-
ing whether a program or library was built successfully.
The log file and the error log file are useful for identifying

details about process failures or simple compile errors.
Event Log. This file is an event history of the actions upon
every module involved in a compile. Every time a module
is checked out, compiled, or archived into a library, a record
is written to the event log with the time and date, the
module name, the version number, what was done (com-
piled, archived), and if it was successful. This file is estab-
lished when an integration process is started and is never
purged until the the integration directory is removed. The
event log provides a useful audit trail to track down things
like when a given module changed, what else might have
changed at the same time, or whether a particular fix was
made.
Process Management Log. This logging file is used to man-
age the overall integration process. Since there are generally
over ten integration directories active at any given time,
Iooking at logging files within each directory to determine
what needs to be done is time-consuming and provides no
overview of how the integration process is working. Any
integration build run on any machine in the network logs
to this file to indicate if a major integration process was
successful. Information in each record includes the start
and stop time, the process run, and the name of the inte-
gration directory that was processed.

Acknowledgments
Tim McGowen produced the early version of the OSI

Express card integration tools from which the cunent pro-
cess evolved. feff Ferreira-Pro was instrumental in setting
the long range direction of the integration process and the
use of RCS, and Kevin Porter and Mike McKinnon produced,
tuned, and managed the integration process. Also con-
tributing to the success of the test tools through their work
on designing, coding, and enhancing the tools were: Lynn
Vaughan, Meryem Primmer, and fon Saunders.

Authors
February 1990

6 =HP OSI Overview

William R. Johnson
Bi l l Johnson helped de-
sign, develop, and test the
session protocol software
for the OSI Express card
and contributed to the de-
velopment of standards
produced bythe U.S.A. Na-
tional Institute of Standards
and Technology (NIST) for
the upper layer of OSl. After

lo in ing HP in 1 985, he helped implement MAP 2.1
networking for HP 1000 A-Series compulers. Be-
fore coming to HP, he worked for a year in software
development at lBM. Bill is now manufacturing net-
works program manager, responsible for market
planning, trade show support, and field education.
He isa 1985 graduateof CaliforniaState University
at Chico, and has a BS degree in computer sci-
ence. Born in Galt. California. he has two children
and resides in Auburn. He enjoys gol f ing, sk i ing,
family outings, and home improvement projects.

I - OSI Backplane Handler-

Glenn F. Talbott

I Glenn Talbott has been a
development engineer for
HP since he graduated
from the University of
California at lrvine in 1972
with a BS degree in electri-
cal engineer ing. He helped
develop the backplane ar-
chitecture and design for
the OSI Express card. He

I '
'*

*L'

also worked on the remote console and boot code
lor the IVIAP 2.1 project and developed the HP
986454 measurement library. A member of the
IEEE, Glenn's prolessional interests focus on
firmware and low-level software and hardware in-
terfaces. A U.S. Marine Corps veteran, he was born
in Washington, D.C., and now l ives in Auburn,
Cal i fornia. His hobbies include so{tbal l , sk i ing, and
camping.

I

FEBRUARy 1 990 HEWLETT-pAcrnRo lounrar 77

18:CONE Software Environment: 28 =OSl Upper-Layer Protocols:

David A. Kumpf Kimball K. Banker
A graduate of the University
of California at Davis with a

t As an R&D engineer in HP's
Data Systems Division, Kim
Banker helped develop the
HP 2250A measurement
and conlrol processor. He
has worked on other HP
factory automation prod-
ucts and on the HP 1 20654
video output card for the

ness, improve perf ormance ol the timer manager,
and implement the backplane message Inter face
for the OSI Express card. Before that, he worked
on the synchronous data link control product for
HP's business operating system, MPE XL. Born in
Mi lwaukee. Wisconsin, Dave has two chi ldren and
resides in Roseville, California. He enjoys back-
packing, mountaineer ing, and readtng.

As a member of the
Roseville Networks Division
technical staff, Steve Dean
designed and implemented
the buffer manager and
scheduler, which are parts
of the common OSI net-
working environment
(CONE) for the OSI Express
card. After loining HP in

1984, he worked as a process engrneer wrth the
manuJacturing team that automated the autoinser
tion process for building l/O and networking
boards. Before that, he served as a development
engineer at Amdahl Corporation, working on a
small operating system that was used to run daag-
nostic programs for final reliability tests betore
product shipment. Steve earned his BS (1 982) and
[/S (1986) degrees in computer science at the
Cal i fornia State Univers i ty at Chico. Born in Chico,
he now lives in Rocklin, California, where he enjoys
gol f , basketbal l , and f ishing.

H. Michael Wenzel
The space shuttle was l\,4lke
Wenzel's major concern lor
five years when he served
as a contract officer on the
shuttle program and as a
captain in the U.S. Air

: Force. Hislirst project after
coming to HP in 1974 was
the development oJ
lirmware for a raster pranter.

As a systems designer, he was the primary de-
signer for the OSI Express card and is currently
working on l/O systems design and performance.
He has developed software for several data com-
munications and network proiects, including de-
sign of the message manager and architecture for
the HP LAN/9000 Series 500 network subsystem.
l\,4ike has previously authored an article for the HP
Journal ([/arch] 984). He received his BSEE (1 969)
and MSEE (1971) degrees f rom the Univers i ty of
Denver. He was born in Al ton, l l l inois and l ives in
Granite Bay, California. The father of two children,
he enloys music, h ik ing, fami ly act iv i t ies, and
Investrng.

Jl'lL HP 10ooA-Seriescomput-
er . and helped design and develop the session
protocol layer for the OSI Express card. For the past

three years, he has participated in ANSI and OSI
protocol standards committees and has designed
and implemented these standards into HP network-
ing products. Kim serves as ANSI's U.S. session
editor and as session rapporteur in ISO SC 21 , and
is a memberof the IEEE 802.6commit teeon met-
ropolitan area networks. He came to HP after earn-
ing his BS degree in electrical engineering lrom the
University of Calilornia at Davis in 1 977 and an MS
degree in computer engineering at Carnegie-Mel-
lon Univers i ty in 1979. Kim l ives in Rockl in, Cal i lor-
n ia and enjoys bicycl ing, basketbal l , sk i ing, and

swlmmrng.

Michael A. Ellis
Along with a passron tor
tandem mountain b ik ing in
Northern California, Mike
Ellis also is a soltware en-
gineer wi th the HP Rosevi l le
Networks Division. He de-
s igned and implemented
the ACSE and presentation
protocol modules for the
OSI Express card. He also

participated in the development of standards and
funct ional speci f icat ions for OSl, ACSE, and pres-

entat ion protocols. At ter jo in ing HP in 1983, [/ ike
worked on the installation and support of marketing
and manufactur ing systems. Ear l ier , he designed
and developed an interactive real-time data base
management system for use in iail facilities in the
United States. His professional society member-
ships have included chair ing the U.S.A. Nat ional
Institute o{ Standards and Technology Special In-
terest Group on Upper Layer Architecture (1987)
and membership in the ANSI X3T5.5 Upper Layer
Architecture Committee (1986-82). He received a
BS degree (1978) in genetics from the University
of California at Davis and an lVlS degree (1983) in
computer science f rom Sacramento State Univer-
sity. Born in Albuquerque, New Mexico, Mike re-
sides in Sacramento, California, and enjoys moun-
ta in b ik ing, sk i ing, windsurf ing, and music.

36-OSl Class 4 Transpo6 Pyel66ql -

As a member of the R&D
design team at the
Roseville Networks Divi-
s ion, Rex Pugh co-
designed and developed
the OSI class 4 transport
protocol for the HP OSI Ex-
press card. He current ly is
investigatlng routing pro-
tocols, focusing on de-

tionless routing protocol. He worked on the de-
velopment of SNA layers 3 and 4 to provide con-
nectivity forthe HP 3000 MPE XL operating system
with IBM systems. Rex came to HP in 1984 as a soft-
ware design engineer alter graduating from the
University ol California at Davis with a major in com-
puter science and mathematics. He is a member
of the American National Standards Institute
X3S3.3 subcommittee, which is developing OSI
network and transport layer standards. Born in
Arvada, Colorado, he lives in Sacramento, Califor
nia, and enjoys water and snow skiing.

45- OSI Data Link Layer Design

Judith A. Smith
Shortly atter graduating
from California State Uni-
versity at Sacramento with
a BS degree in computer
science in 1985, Judy
Smith came to HP as a soft-
ware development en-
gineer. She designed, im-
plemented and tested soft-
ware used in the OSI Ex-

press card and in the past has tested LAN cards.
Currently, she is working on diagnostics for LAN
interf ace cards for the HP-UX and MPE XL operat-
ing systems. Born in Sacramento, CaliJornia, Judy
is an active member ol the Sacramento Valley
Chapter of the Society of Women Engineers. She
resides in Rosevi l le , Cal i fornia and enloys s ing-
ing wi th the Sweet Adel ines, cycl ing, and downhi l l
sk i ing.

Bill Thomas
Bill Thomas's maJor profes-
s ional interest is designing
the hardware-sottware ln-
terfaces between compuf

e il 1 o. urJ tne'r perrpnerats

.) illiilt:d"'ffit:
\ fo l -L - r | . ^^ -
SG-' L cn" 1985 as a soflware en-

ti€- il oin"", rioht atter he
/ t L . - r d / f l \ " r r r l o h p l n a d d o

P 1 ,
: . Ac , i . ve lop and increase lhe
' - ! 'qJ , r l :

lunc t iona l r tvo l the tes thar -

.ffi Before helping design and
implement the HP OSI Ex-

Liz Bortolotto served as a
performance engineer
working wi th the Rosevi l le

ft Networks Division R&D
- B

7, * / ! il:n:ili#,:"','-:r?",
,,.a

' "^ tc test svstems and Hp-tts
interface cards. He also designed software that
created an automated test and measurement envi-
ronment for HP 1 000 computer systems. Bill came
to HP in 1969. He received his BS degree in 1969
at the University of CaliJornia at Berkeley and an lvlS
degree in 1972 at Colcrado State University, both
in electrical engineering. At Berkeley, he was a
member of the engineering fraternity, Eta Kappa
Nu, and is now a member of the IEEE. Act ive rn
amateur radlo emergency communications, he
l ives in Carmichael , Cal i fornia.

51:OSl Design for Pertormance::::::

Elizabeth P. Bortolotto

"F'3.m-.
*\

: ':

team that developed and

f irmware design forthe HP 98642 four-channel mul-
t ip lexerand the HP DMI/3000 system. She is cur-

Steven M. Dean

3?

/f!

Rex A. Pugh

l, \ - imolemented the OSI Ex-
J .. , :r ' { , l , - -- ,-- s r n r P s s r : a r r r S h e c a m e t o
- .

- <
n - : ' - - - - - -

r-- - HP in 1qR3 aS a laboratory
, . f f i : - ; l l ' , r ; - - . - - :' s b - ' i l i l r r w H r c P r t g r n e e r . a n d
\ t - .r ,' . \ i was responsible for

78 nEwrrrr-pecxARD JoUFNAL FEBRUARY 1 990

velopment and standardization of an OSI connec-

Neil M. Alexander

rently a technical marketing engineer. Liz earned
a BS degree (1982) and an MS degree (1988) in
computer science f rom California State University
at Chico. Born in Kansas City, Missouri, she and
her husband live in Loomis, California, and are ex-
pecting theirlirst child. Liz is very interested in en-
vironmenlal concerns and also enjoys skiing, bik-
ing, dancing, vol leybal l , and music.

59
-

OSI Software Diagnostic Program :=

Joseph R. Longo, Jl.
Rick Longo is a software
development eng ineer who
was responsible for the de-
sign and development of
diagnostic and debugging
tools for the HP OSI Ex-
presscard. HecametoHP
as a summer student in
1 980 and toined full{ime in
1 981 , working on manu{ac-

turing applications and technical support projects
before moving to the Roseville Networks Division
laboratory in 1985. Rick is currently researching
network management software for LAN devices.
While studying for his BS degree (1980) in com-
puler science from the Calilornia State University
at Chico, he worked for a year at Burroughs Corpo-
ration. Born in Los Molinos, California, he resides
in Roseville, California. Rick enjoys volleyball, golf ,
softball, hiking, and family outings.

67 = OSI Support Features

Jayesh K. Shah
Jay Shah has traveled a
long way from his birth-
place of Aden in Southern

engineer for Data Switch Corporation, responsible
for sales support of peripheral and communica-
tions matrix switches, and a network designerwith
Bechtel Power Corporation, where he designed an
internal communications network. Born in
Spokane, Washington, Chuck has a BA degree in
economics from the University o{ California at
Berkeley. He lives in Ophir, California, and enjoys
canoeing and hobby larming. He is the treasurer
of the Ophir Elementary School parent{eachers
association.

72 =OSl Protocol Stack Integration:-

As a soJtware developmenl
engineer, Neil Alexander
provided software config-

.r uration management pro-
::, cesses and tools{orthe HP

1: OSI Express project. Be-
1 fore he came to HP in 1988,

Neil supervised the infor-
mation center at the Sac-
ramento Municipal Utility

District. He also served as a lead programmer at
Wismer and Becker Construction Engineers, as an
application analyst at Control Data Corporation,
and an associate engineer at Lockheed Missiles
and Space Company. Born in Sacramento, Califor-
nia, he received a BS degree (1972) tn computel
science and mathematics f rom the California State
University at Chico. He currently resides in
Roseville. California.

Randy J. Westra
Randy Westra came to HP
in 1983 as a development
engineer shortly after he
earned BS and MS degrees
in computer science from
the University of lowa. He
worked in the R&D labora-
tory at the Logic Systems
Division developing an
editor, compilers, and de-

electronic systems for lasertarget designators and
cryogenic coolers for infrared sensors. Chris
coauthored an International Microwave Sym-
posium paper on a high-speed photoreceiver and
has written several other symposium papers on RF
and lightwave sublects. Born in Merced, California,
he earned a BSEE degree (1 975) from the Univer-
sity of California at Berkeley, and an MSEE degree
(1978) Jrom the University of California at Los
Angeles. Married and the father of lwo sons, he
lives in Santa Rosa, California, where he enjoys
wine tast ing, running, sk i ing, body surf ing, and
camping.

92 I Fiber optic Interferometer :

Douglas M. Baney
Now a doctoral candidate
in applied physics at the
Ecole Nationale Sup6rieure
des T6l6communications in
Paris, Doug Baney has
been with HP's Signal
Analysis Division since
1981, specia l iz ing in the
design ol microwave
amplifiers and frequency

multipliers. Most recently, he contributed to the de-
velopment of the HP 1 1 980A lightwave inlerferome-
ter. He earned his BS degree (1 981) in electronic
engineering from the California Polytechnic State
University at San Luis Obispo and an MSEE degree
(1986) from the University of California at Santa
Barbara with an HP fellowship. Doug is an author
and coauthor of several scienti{ic and conference
articles published in English and French on the
laser power spectrum, and is named a co-inventor
in a patent for an optical measurement technique.
Born in Wayne, New Jersey, Doug now lives in
Paris. When he returns to California, he plans to
continue his {avorite activity, sailing his Hobie Cat.

Wayne Sorin developed
new fiber-optics-based
measurement technrques
and instrumentation after
his arrival at HP
Laboratories in 1985. He
also contributed to the idea
for the gated delayed self-
homodyne technrque dur-
ing development of the HP

1 1 9804 fiber optic interferometer. While attending
Stanford University, he studied evanescent inter-
actions in single-mode opticai f ibers. Born in New
Westminster, British Columbia, Wayne earned a BS
degree (1 978) in physics and a BS degree (1 980)
in electrical engineering from the University of
Br i t ish Columbia, and MSEE (1982) and PhD de-
grees (1986) from Stanford Unlversity. Wayne
holds f ive patents on fiber optics components and
is a member of the IEEE and the OSA. He is the
author of 1 4 technjcal papers in the {ield ot fiber op-
tics components and lasers, and teaches a fiber
optics course at California State Unjversity at San
Jose. His major professional interests are develop-
ing new fiber optics-based measurement tech-
niques and instrumentation. Married and the father
of a son, he enloys playing tennis and soccer in his
hometown ol Mountain View. California.

I

Yemen to his present
homelown of Citrus
Heights, California. He
came to HP in 1988 as a de-
velopment engineer in the
Roseville Networks Divi-

* jF sion, working on trou-

HP OSI Express card. Currently, he's testing LAN
cards for H P Vectra computer systems. Jay earned
his BSE degree (1986) in computer systems en-
gineering from Arizona State University and his MS
degree (1988) in computer science from the Uni-
versity of California at Los Angeles. He is a member
of the IEEE and the ACM. His hobbies include read-
ing, sk i ing, and t ravel ing.

Chuck Hamer is a technical
marketing support en-
gineer in HP's Rosevi l le
Networks Division. He de-
veloped the support strat-
egy tor the MAP 3.0 prod-

^adl , uct , the t roubleshoot ing

*4u{J#,l".:'.t:l$tl:y1:
module. He also worked on the MAP 2.t produci
and provided on-line support for DS/l000 and
X.25l1000 systems at the HP Network Support
Center. Before coming to HP, Chuck was a systems

velopment system. After transjerring to the
Roseville Networks Division, Randy developed test
tools and the session protocol layer for the OSI Ex-
press card. Born in Sioux Center, lowa, Randy lives'
in Roseville, California with his wile and new daugh-
ter. He enjoys swimming, reading, and traveling.

80
-

Lightwave Signal Analysis

Christopher M. Miller
As a project manager for
the past five years at HP's
Signal Analysis Div is ion,
Chris Miller was respon-
sible for development of the
HP 714004 l ightwave s ig-
nal analyzer. Before that,
he was the project man-
ager for the HP 71 3004
millimeter spectrum

analyzet. Earlier, he was with HP Laboratories,
where he designed high-speed bipolar and GaAs
integrated c i rcui ts. He came to HP in 1979 l rom
Hughes Aircraf t Company, where he designed

:

bleshootino methods and tormat definition for the # 1 , t r e . s r v u r r u r , u v i l r P i l v r a , d r r u !

buggers for the HP 64000 microprocessor de-

Wayne V. Sorin

Charles L. Hamer

FEBRUARY 1 990 HEWLETT PACKARD JOURNAL 79

High-Speed Lightwave Signal Analysis
This analyzer measures the important characteristics of
high-capacity lightwave systems and their components,
including single-frequency or distributed feedback
semiconductor lasers and broadband pin photodetectors.

by Christopher M. Miller

HE LOW PROPAGATION LOSS and extremely
broad bandwidth of single-mode optical fiber have
contributed to the emergence of high-capacity digital

transmission systems and analog-modulated microwave-
frequency systems. New lightwave components have been
developed to support these high-speed systems. Most no-
table among these components are single-frequency or dis-
tributed feedback semiconductor lasers and broadband pin
photodetectors.

The HP 7L400A Lightwave Signal Analyzer has been
designed to measure the important characteristics of these
lightwave components and systems, such as signal strength
and distortion, modulation depth and bandwidth, intensity
noise, and susceptibility to reflected light. When the light-
wave signal analyzer is used in conjunction with the HP

11980A Fiber Optic Interferometer (see article, page 92),
the linewidth, chirp, and frequency modulation charac-
teristics of single-frequency lasers can be measured.

System Description
The HP 7'|,4OOA Lightwave Signal Analyzer, Fig. 1, is

part of the HP 70000 Modular Measurement System, which
provides RF, microwave, and now lightwave measurement
capability. The HP 70000 is an expandable system and can
be upgraded as requirements grow and new modules be-
come available. For example, the HP 71,4OOA can measure
lightwave modulation upto22 GHz. However, substitution
ol a 2.9-GHz RF front-end module makes the system an HP
71,407A, which for certain applications may be a more cost-
effective solution. In addition to being lightwave signal
analyzers, the HP 774OOA and HP 71,4O1,A also function as
microwave and RF spectrum analyzers. The current offer-
ing of HP 70000 modules is shown in Fig. 2.

A simplified block diagram of the HP 774OOA is shown
in Fig. 3. The key module in the system is the HP 708104
Lightwave Receiver. Light from the input fiber is collimated
by a lens and focused onto a high-speed pin photodetector.
The optical attenuator in the collimated beam prevents
overload of the front end. The photodetector converts

Fig. 1. An HP 70000 Modular
Measu rement System configured
as an HP 71 400A Lightuvave Signal
Analyzer, shown with the HP
1 1 980 A F i ber O ptic I nb rte romete r.

80 HEWLETT-pAcKARD JoURNAL FEBRUARv 1990

Fig.2. The HP 70000 f amily of modular instruments includes
lightwave signal analyzers, RF, microwave, and millimeter-
wave spectrum analyzers, tracking generators, mrcrowave
power meters. digitizers, and vector voltmeters.

photons (optical power) to electrons (photocurrent). The

time varying component of this photocurrent, which repre-

sents the demodulated signal, is fed through the preampli-

fier to the input of the microwave spectrum analyzer. The

dc portion of the photocurrent is fed to a power meter

circuit. Thus the same detector is used to measure both

the average power and the modulated power.

The lightwave signal analyzer is often confused with an

optical spectrum analyzer (also called a spectrometer). Al-

though both instruments have frequency-domain displays,

the information they provide is quite different. The optical

spectrum analyzer shows the spectral distribution of aver-
age optical power and is useful for observing the modes of
multimode lasers or the sidelobe rejection of single-fre-
quency lasers. Its measurement resolution is typically about
0.1 nm or approximately 18 GHz at a wavelength of 1300
nm. The lightwave signal analyzer displays the total aver-
age power and the modulation spectrum, but provides no
information about the wavelength of the optical signal.
This distinction is shown in Fig. 4.

Lightwave Receiver Design
Four major subassemblies make up the lightwave re-

ceiver module. They are the optoblock, the optical micro-
circuit, the average power circuitry, and the optical at-
tenuator control circuitry. The optical and high-frequency
RF circuits are located close to the front-panel connectors,
as shown in Fig. 5.

The optoblock is essentially an optical-mechanical as-
sembly that serves two functions. It collimates the light at
the input and refocuses it onto the detector, and along the
way it allows for attenuation of the light. The input to the
optoblock uses the fiber optic connector adapter system
developed by HP's Boblingen Instruments Division. The
adapter system is based on the precision Diamond@ HMS-
1O/HP f iber optic connector. l This adapter design al lows
easy access to the ferrule for cleaning, provides a physical,
low-return-loss contact to the input fiber, and allows mat-
ing to any of five different connector systems: HMS-10/HP,

300-MHz
Calibration

Output

Optical
Input

Optical
Alienuator

Control Bus

RF
Outpul

Fig. 3. Ihe lightwave signal analyzer system, highlighting the HP 70810A Lightwave Receiver

secllon.

To Test
Device
(See Fig. 14)

HP 70810A Lightwave Receiver Seclion

FEBBUARy 1990 HEWLETT-pAcKARD JoURNAL 81

Time Frequency 22
GHz

Fig.4. Measurement differences between a lightwave signal
analyzer and an optical spectrum analyzer.

FC,PC, ST, biconic, and DIN. Internally, the fiber butts up
against a piece of glass on the backside of the connector.
Index matching fluid at this interface and an antireflection
coating on the glass-to-air surface help maintain the con-
nector's good input return loss.

Exit ing the input connector, the l ight passes into air. The
diverging beam is collimated into an expanded parallel
beam, which then passes through a continuously variable
O-to-30-dB circular filter. The filter is coated with a metallic
neutral density layer which reduces the wavelength depen-
dence of the optical attenuation. The filter is angled to the
optical axis to prevent reflection back to the optical connec-
tor. The positioning of the filter with the drive motor, op-
tical encoder, and drive electronics will be described later.

A mirror positioned at a 4S-degree angle to the optical
path directs the light to the output lens, which focuses it
onto the detector. The mirror is partially transmissive,
which allows the light to be aligned to the detector by
viewing the reflected light from the illuminated detector
with a microscope objective, as shown in Fig. 6.

Optical Microcircuit
The optical microcircuit containing the pin photodiode

and microwave preamplifier is mated to the optoblock. The
pin detector works by converting received optical power

Fig.5. HP 708104 Lightvvave Receiver, showing the proxim-
ity of the optoblock and optical microcircuit to the f ront panel.

into an electrical current. Light at wavelengths between
1200 and 1600 nm enters through the antiref lect ion-coated
top surface, and passes through the transparent InP p layer.
Electron/hole pairs are created when the photons are ab-
sorbed in the InGaAs i region. Reverse bias is applied across
the device, sweeping the electrons out through the bottom
n-type InP substrate, while the holes are collected by the
p-type top contact. The active area is only 25 pm in diam-
eter, which keeps the device capacitance low. This, along
with the short transit time across the i layer, contributes
to a 20-GHz device bandwidth.

Electrical photocurrent from the photodiode's anode is
terminated in a preamplifier that has an input impedance
of 50O and a bandwidth of 100 kHz Io 22GHz. The cathode
side of the photodiode is bypassed by an 800-pF capacitor
to provide a good RF termination. The preamplifier helps
overcome the relatively high noise figure of the microwave
spectrum analyzer shown in Fig. 3. It also improves the
overall system sensitivity. The preamplifier has about 32
dB of gain, provided by a cascade of four microwave
monolithic integrated circuit (MMIC) amplifier chips, each
with a nominal gain of B dB (see box, page B4).

The optical microcircuit package includes the bias board
assembly. This was done to shield the bias lines from any
radiated electromagnetic interference (EMI). In addition, a

Microscope tr"n,"".#)

Continuously Variable
-.:

Neutral Densitv Filter- |
' \ l

G;
Encoder

Copper Mirroi

,,'*lt-*)
Cable (lnput)

Photodiode

Microcircuit Package
Fig. 6. Optoblock and microcir-
cuit assembly showing optical
alignment.

82 rEwren-pncxARD JoURNAL FEBRUARY i 990

Signal Output

spiral wound gasket is placed at the microcircuit-optoblock
interface to reduce the likelihood of any EMI pickup. A
rubber O-ring gasket is also placed at this interface to help
seal the microcircuit assembly.

Average Power Circuitry
Connected to the cathode of the photodetector is a trans-

impedance amplifier, which is the input circuit for the
average power circuitry. The design of the average power
meter was highly leveraged from the HP 8152A Optical
Average Power Meter.2 Fig. 7 shows the block diagram of
the average power circuitry, which incorporates four key
elements: a transimpedance amplifier, offset correction,
wavelength gain correction, and digitization.

In this design, the transimpedance amplifier servbs a
dual role. It converts photocurrent into an equivalent volt-
age depending on which feedback resistor is selected. In
addition, it provides the reverse bias for the photodiode.
The input amplifier is an OPA111BM, which was chosen
for its low input offset characteristics. The transimpedance
amplifier is followed by a difference amplifier which re-
moves the bias voltage component from the signal compo-
nent being measured. This amplifier is followed by an in-
ternal gain-adjust amplifier, which is set to produce a 4-volt
output when - 20 dBm of optical power is present at the
input.

The two values of feedback resistors, along with the three
values of step gain, provide six different range settings.

//Guarding

,f Jl

The proper range is automatically selected as a function
of input power level. The design allows a measurement
range of + 3 dBm to less than - 60 dBm when there is no
optical attenuation present. With the attenuator set to 30
dB, power levels up to + 33 dBm can be measured. In the
lowest range the feedback resistor is 3.33 MO and at - 60
dBm the photocurrent is less than 1 nA, so guarding is
used to prevent offset errors resulting from leakage cur-
rents.

I DAC, ADC, and Oflset DAC
To compensate for the photodiode's responsivity vari-

ations with wavelength, a multiplying digital-to-analog
converter called the I DAC is used as a variable-gain
amplifier. The average power reading of the HP 714004 is
calibrated at two wavelengths: 1300 nm and t550 nm. The
responsivity at 1300 nm is defined as 0 dB and the relative
responsivity value at 1550 nm is within +0.5 dB of this
value. To calibrate the HP 71,4OOA to an external reference
or if the customer chooses to operate at another wavelength,
the value of the)t DAC can be varied by *g dB using the
USER CAL function.

The operation of the analog-to-digital converter (ADC)
circuitry is identical to that of the HP B'1,52A.2 An AD7550
13-bit ADC is used, with the following relationship for a
10-dB range step:

n : A 6 (4 0 9 6 / V r J + 4 0 9 6 ,

OPA 1118M

Fig.7. Block diagtam of the average power meter circuit

FEBRUARy r99o HEWLETT-pAoxeRo .rouRrunr 83

A Broadband Instrumentation Photoreceiver

A broadband microwave ampli f ier is the key to achieving good
photoreceiver sensit ivi ty without compromising the system's
bandwidth The ampli l ier in the HP 70810A Lightwave Receiver
consists of lour microwave monoli thic distr ibuted ampli f iersl that
have their lowjrequency corner extended down to 1 00 kHz. Each
amplif ier chip is an independent distr ibuted ampli l ier consist ing
ol seven GaAs FETs spaced along synthetic 50O input and output
t ransmiss ion l ines . In th is d is t r ibu ted des ign , the s igna l f rom each
FET adds to that of i ts neighbors to produce gain at frequencies
beyond the cutoff of the individual FETs.

between the 1 O-pF on-chip bypass capacitor and the inductance
of the bond wire connected to the external bypass capacitor.
The ampli f ier bias is fed into the reverse termination end of the
drain l ine through a bias choke. This feed point has the advantage
of less sensit ivi ty to bias choke shunting impedances. The bias
choke is constructed by close-winding insulated, gold-plated
copper wire around a high-magnetic- loss cyl indrical core. Inter-
stage coupling is through a 1000-pF TaO. thin-f i lm integrated
circuit capacitor in paral lel with a 0.047-pF ceramic capacitor.
The integrated capacitor has good microwave performance and

a a a
Seven

ldentical o r r
Stages

o.o47
1tF

V su

Detai ls of the input stage of the photoreceiver (Fig. 1) show
how the good lowJrequency and high-frequency performance
of the ampli f ier cascade is achieved. The gate and drain art i l ic ial
transmission l ines are external ly bypassed with 0.047-pF ceramic
capacitors. A 10O resistor is used to prevent paral lel resonance

Start 0.1 cHz
Stop 26.5 cHz

Fig 2. Gain and noise figure of the four-stage amplifier cas-
cade over the 100-MHzlo-22-GHz frequency range.

1000 pF

the large ceramic capacitor is mounted on a short suspended-
substrate transmission l ine segment to reduce parasit ic capacr-
tance to ground. Typical gain and noise f igure for the cascade
are shown in Fig. 2.

To achieve maximum photoreceiver sensit ivi ty, the photo-

Fig.3. Photograph of the photodiode and first stage of the
amolifier.

Fig,'1. Detail of single amplifier stage, showing bias choke, external bypass capacitors, and
the interstage coupltng capacitors for the MMIC chip

1 0

35

30

^ 2 5
o
920

F t s
o

1 0

84 HEwrerr,pacxARD JoURNAL FEBRUARy 1990

E-2
3 - 4
o

f ; - s
[- e
6

5 - 1 0
iL

E - l z
E,

a
- 1 4

g - 1 6
C'
E - 1 8

L

_20

detector is not back terminated. Consequently, the photodiode
is placed as close as possible to the ampli f ier input to minimize
mismatch loss. This is shown in Fig. 3. The combined frequency
reponse ol the photodetector and ampli l ier is shown in Fig. 4.
Overall freqency response roll-off for the optical receiver micro-
circuit is 13 dB, of which B dB is from the ampli f ier and 5 dB is
from the ohotodiode.

Reference
1. J. Otr, "A Stable 2-26.5 GHz Two-Stage Dual-Gate Distributed Nr[/lC Amplif ier,"
IEEE-MTT S lnternational Microwave Symposium Dlgest, HB-4, 1986, pg. 817.

Dennis Derickson
Development Engineer

Signal Analysis Division
Start 0.1 GHz
Stop 22 GHz

Fig. 4. Combined frequency response f/atness of the photo-
detector and the amplifier.

where n is the number of ADC counts, Ai, is the analog
input voltage, and V1" is the full-scale input voltage. A
one-millivolt change in the voltage at V. in Fig. 7 produces

a one-count change in the ADC reading. To center the input
voltage range on the ADC range, V" is shifted down by
3.901V to produce the following relationship:

The relative power in a given range is computed by sub-
tracting 195 from the ADC counts and then dividing by
4000 counts.

Because the reverse-biased, uncooled InGaAs photodiode
has a substantial dark current of several nanoamperes that
is present under no illumination, offset compensation had
to be designed to correct for offsets that could be larger
than the signal in the most sensitive range. There are two
convenient places to put the offset correction DAC: before
or after the step-gain amplifier. Placing the offset correction
after the step-gain amplifier has the advantage that the
resolution of the offset correction is constant and indepen-
dent of range, and there can be a one-to-one correspondence
between an ADC count and an offset DAC count. However,
the disadvantage is that the effective offset correction range,
referenced to the input, decreases as the step gain is in-

IlKB NBIl
0n O f f

H I GHEST
PERK

NE XT
PE RK

t)ELTR

B. I .N .

S T 3 6 6 . 7 n s e c 1 o f
IMEN_UTT-I

Fig.8. Typical display of the light-
wave signal analyzer showing the
menu key labels (firmkeys and
softkeys), the average power bar,
and the modulated lightuvave
sDectrum.

V.(V)

>7.996
7.996
4.000
0.400
0.000

- 0 .195
< - 0 .195

A'"(V) ADC Relative
Counts Power

overflow
4.095 8191
0.099 4195

- 3 .501 595
- 3 .901 195
- 4 .096 0

underflow

2 .O
1 .0
0.1
0.0

Fr eq

flnpt d

l lark er

Bt{ , Snp

T r a c e s

S t a t e

l l i s c IlORE
BB 3 ,00 t lHz UB 300 kHz

FEBRUAFy r99o HEWLETT-pAcxeRo lounNnr 85

Microwave Mode Feference Plane

+

HP 70810A
Lightwave Receiver

Lightwave Optical Mode

creased. In this design, a signif icant offset can exist because
of a large dark current component, particularly at the maxi-
mum instrument operating temperature of SS"C. Therefore,
a 12-bit offset DAC is used to supply an offset correction
at the input of the step-gain amplifier that can compensate
for as much as 250 nA of dark current at the photodiode.
This causes a corresponding loss in offset resolut ion in the
most sensitive range, and these leftover residual offset
counts are recorded and subtracted in the firmware.

Input Optical Attenuator
The control circuitry for the input optical attenuator was

highly leveraged from another instrument, the HP 815BA
Optical Attenuator.3 The digital motor control ler uses an
B-bit microprocessor with 128 bytes of internal RAM and
a 16-bit internal timer. This processor sets the pulse width
of the motor drive, whose period is 31.25 kHz. The motor
driver itself is a simple transistor full bridge circuit. An
optical encoder, driven in quadrature mode, provides an
effective resolution oI 2O+B positions per revolution. The
positions, corresponding to 1-dB steps of the linear filter
wheel, are measured at both 1300 nm and 1550 nm, and
these posit ions are stored in EEPROM. The HP 714OOA
uses the same motor control firmware as the HP S15BA,
which is based on a PD (proportional differential) al-
gorithm.3

Display and User Interface
The goal of the display and user interface design was

that both optical and microwave scientists and engineers
would be comfortable with it. Basically, the design follows
the HP 70000 electrical spectrum analyzer formats, and
integrates the optical functionality into this context.

Primarily menu-driven, the user interface consists of a
set of firmkeys on the left side of the display. As shown
in Fig. B, these firmkeys are the basic analyzer control
function headings, which when selected, pul l up submenus
on the softkeys on the right side of the display. These
softkeys for the most part represent immediately executable
functions. Control of optical parameters such as wavelength
calibration, optical attenuation, power meter offset zeroing,
and optical marker functions is offered on submenus with
related analyzer functions.

Displayed intensity modulation of a lightwave carrier

86 lEwrrrr-pnci<ARD JoURNAL FEBRUABy 1990

Lightwave Electrical Mode

Reference Plane Fig. 9. Diagram indicating the
measurent reference plane for
each mode of the lightwave signal
analyzer.

has essential ly the same appearance as the electr ical mod-
ulat ion spectrum, so the basic display format mimics that
of the electrical spectrum analyzer with one important dif-
ference. This difference is the display of the average power
bar on the left side of the screen (see Fig. B). In addit ion
to providing an accurate average power indication, the
graphical power bar representation makes optical align-
ment much easier. The average power and modulated
power displays are coupled in that they are have the same
scale and are referenced to the same absolute amplitude
level.

The lightwave signal analyzer has three measurement
modes. Two modes are for making lightwave measure-
ments-the input is the optical input of the lightwave sec-
tion. The difference in these two modes is in the display
units. In lightwave-optical mode, the display is referenced
to the optical input connector and the display is calibrated
in optical power units. In lightwave-electrical mode, the
display is referenced to the input of the electrical spectrum
analyzer and the display is calibrated in electrical power

7031 0A
PFR

70908A
BF Section

70903A
lF Section

709024
lF Section

70900A
LO/Ctlr,

70810A
Lightwave

Section

1 7

Fig. 10.
analyzer.

. t8

Column

Module address map

v
Reference Plane

;
o

201 9

Optical Input

for the lightwave signal

nffi
rtEill]r

ItigL
+

I

I

I

I

units. This mode was implemented because, before the
lightwave signal analyzer was developed, customers be-
came accustomed to using electrical spectrum analyzers to
make these lightwave measurements, and have specified
some of these measurements in electrical power units. The
display units of these two modes are related by the follow-
ing equation:

P.1".[dBm) :2P"o,[dBm) + 10log[(1 mW) x 12 x 50f,)xG"rr i" j2]

where r is the responsivity of the photodiode and Gu11i,, is
the linear voltage gain of the microwave preamplifier.

The third measurement mode, the microwave mode, is
for making strictly electrical measurements. In the micro-
wave mode the RF input of the lightwave section is used
and the optical path is bypassed. The three modes are
shown in Fig. 9.

Firmware Design Overview
As previously mentioned, the HP 714OOA Lightwave Sig-

nal Analyzer is part of the HP 70000 Modular Measurement
System (MMS). In this system, certain instrument modules,
designated as masters, can control the operation of other
modules, designated as .slaves. Communication between
modules occurs over the internal high-speed modular sys-
tem interface bus (HP-MSIB). Whether a module operates
as a master or a slave is determined by the module's internal
f irmware design and i ts relat ive posit ion in the module
address map.a The address map for the l ightwave signal
analyzer, indicating the row and column posit ions of the
modules in the system, is shown in Fig. 10. The HP 70810A
lightwave section, in the row 0, column 17 location, is the
master module, control l ing al l the modules at higher row
and column addresses up to the column where another
master is present on row 0. Thus, a number of independent
instruments can be configured in the system, simultane-
ously making measurements.

Photodiode
Bias

Fig. 11. Diagram of the reference
receiver used to calibrate the light-
wave signal analyzer.

Firmware for the lightwave module is written in the C
programming language, and the compiled code runs on a
Motorola 68000 microprocessor. The firmware consists of
three major components:
I The pSOS operating system, written by Software Compo-

nent Group, Inc.5 This is a full multitasking operating
system.

r The MMS instrument shell. This is a large, integrated
col lect ion of support routines and drivers intended to
supply functional i ty to most HP 70000 Series modules.

r Lightwave-section-specific code written on top of the
instrument shell and the pSOS operating system.
The l ightwave-specif ic code encompasses a number of

elements. Communication, rneasurement coordination,
and control of the HP 709004 local osci l lator module must
be establ ished and maintained. The HP 709004 local osci l-
lator module is the control ler of the electr ical spectrum
analyzer and is al located a display subwindow for present-
ing the lightwave modulation spectrum. An array contain-
ing the flatness corrections for the frequency response
of the optical microcircuit is stored in the HP 70810A's
EEPROM and is passed overthe HP-MSIB to the HP 709004
to apply as a correction to the displayed trace. A small
vertical stripe on the left edge of the window is reserved
for the average power bar, which the HP 70810A generates.
The HP 70900A is rel ied upon to display al l annotation
normally associated with the spectrum analyzer except for
the active parameter area, the message area, the mode anno-
tat ion, and the average power and optical attenuation anno-
tat ion, for which the HP 70810A is responsible. The manual
interface is handled entirely by the lightwave section. All
remote commands and parameters are parsed by the HP
70810A. Commands that are intended to modify the spec-
trum analyzer are passed along to the HP 70900.4.

When the HP 70810A is operated without an HP 70900A
as i ts slave, i t operates in a stand-alone mode. In this mode
the module can be used as a l ightwave converter. can make

FEBRUARy 1 990 HEWLETT-pAcKARD JouRNAt 87

Shutter

Polarization 2Ox
Preserving Lens

12. Heterodyne /aser system
calibratino reference receiv-

other potential error source.T
After the reference receiver is calibrated, it is used to

calibrate lightwave signal analyzer systems. To calibrate a
system, a gain-switched diode laser's output is measured
with the reference receiver. The calibrated laser response
is then used to calibrate the system under test.

r'

Fig.
for
ers.

average optical power measurements, and can control the
optical attenuation.

Calibration
A major contribution of the HP 71,4oOA is its optical

calibration. To our knowledge it is the only lightwave prod-
uct that is calibrated in both relative and absolute power
levels out to a modulation bandwidth of 22 GHz. The light-
wave signal analyzer is calibrated by comparing its re-
sponse at 250 frequency points to that of a reference re-
ceiver. This specially packaged reference receiver is cali-
brated as shown in Fig. 11. All sources of electrical fre-
quency response error, including detector capacitance,
mismatch loss, cable loss, and spectrum analyzer ampli-
tude errors, are measured by feeding a power-meter-cali-
brated microwave signal through the fixture and into the
spectrum analyzer. The frequency response of the reference
detector's photocurrent is then calibrated by turning off
the microwave signal and injecting a constant amplitude-
modulated optical signal whose modulation frequency is
determined by the heterodyne interaction of two quasiplanar-
ring, diode-pumped Nd:YAG lasers,6 one of which is tem-
perature tuned over a 22-GHz range.

These two highly stable single-line lasers produce a beat
frequency with a linewidth less than 10 kHz, which is essen-
tial for accurate repeatable measurements. As shown in
Fig. 1,2, the system is constructed with polarization-pre-

serving fiber to avoid amplitude variations of the beat fre-
quency caused by a change in the relative polarizations of
the two laser signals. The output powers of the lasers are
monitored during the calibration process, eliminating an-

88 nEwlrrr-pecrARD JoURNAL FEBRUARY i 990

BL 10.00 dBm
Atten 0 dB
5.00 dB/Div
Avg Pwl 19.1 dBm
Fesponsivity
1428 Volts/Watt

ls;." = 40 mA

Start 10.0 MHz
RB 3.00 MHz VB 10.0 kHz

Fig. 13. Modulation frequency
high-speed laser.

Mkr #1AFrq 13.04 GHz
-3 .10 dB

Lightwave Electrical

" Vr^+ilF4F/

Stop 10.00 GHz
St 1.799 s

response measurement of a

System Performance
The HP 774oo[Lightwave Signal Analyzer offers ad-

vanced lightwave measurement performance. The combi-
nation of the broad-bandwidth pin photodetector, the high-
gain, low-noise microwave preamplifier, and Hewlett-
Packard's highest-performance spectrum analyzer offers
excellent measurement sensitivity ouIIo 22 GHz. The dis-
played average optical noise floor in a 10-Hz resolution
bandwidth is typically better than - 68 dBm from 10 MHz
to 16 GHz, allowing optical signals below -60 dBm (1 nW)
to be detected easily. With the built-in 30-dB optical at-
tenuator, intensity modulation up to + 15 dBm (31.6 mW)
can be displayed.

Modulated power frequency response is flat within an
excellent J-1.0 dB from 100 kHz to 22GHz. This is a result
of the optical heterodyne calibration technique and the
method of calibrating the HP 774OOA as a system. The
system calibration corrects for the roll-off of the HP 70810A
lightwave section and the frequency response of the spec-
trum analyzer. The mismatch loss and cable loss between
the lightwave section and the spectrum analyzer are also
corrected.

Measurements
The HP 71,4OOA can make a number of measurements

on lasers, optical modulators, and receivers.s Only a few
can be described here.

A key parameter in any lightwave system is the modula-
tion bandwidth of the optical source. Current-modulated
semiconductor lasers today have bandwidths that are ap-
proaching 2O GHz. This bandwidth is achieved by optimi-
zation of the laser construction and selection of the appro-
priate cunent bias point. Fig. 13 shows a measurement of
intensity modulation frequency response on a semiconduc-
tor laser designed particularly for high-frequency opera-
tion. As can be shown analytically,e the modulation band-
width increases as a function of bias. In addition, the peak-
ing in the response decreases, which is generally advan-
tageous. If the current is increased beyond the critically
damped response point, the bandwidth decreases.

This intensity modulation response measurement was
made with the HP 714OOA in conjunction with the HP
703004 tracking generator (2OHz to 2.9 GHz) and the HP
703014 tracking generator (2.7 GHz to 18 GHz). Fig. 14
shows the setup. These tracking generators are also mod-
ules in the HP 70000 MMS family, and produce a modula-
tion signal that is locked to the frequency to which the
analyzer is tuned, thus making stimulus-response measure-
ments easy and straightforward.

In most applications the laser noise spectrum is very
important for a number of reasons. It obviously impacts

Fig. 14. Block diagram of the instrumentation for high-speed
laser modulation frequency response measurements.

Fig. 15. lntensity noise measurement of a high-speed laser
showing the intensity noise peaking.

the signal-to-noise ratio in a transmission system. Further-
more, it can be shown that the intensity noise spectrum
has the same general shape as the intensity modulation
response, and can be used as a indicator of potential mod-
ulation bandwidth.e The characteristic noise peak of the
intensity noise spectrum also increases in frequency and
decreases in amplitude as the bias current is increased.
This is shown in Fig. 15.

The laser intensity noise spectrum can be greatly affected
by both the magnitude and the polarization of the optical
power that is fed back to the laser. This is called reflection-
induced noise and is typically caused by reflections from
optical connectors. This reflected power upsets the dynamic
equilibrium of the lasing process and typically increases
the amplitude of the intensity noise as shown in Fig. 16.

RL 10.00 pW
Atten 0 dB
3.00 dB/Div
Avg Pwr 1.36 mW
Markea
11.33 GHz
468.8 nW

Start 24.0 MHz
RB 3.00 MHz VB 10.0 kHz

RL 16.00 dBm
Atten 0 dB
10.00 dB/Div
Avg Pwr 16.1 dBm
Responsivity
1428 Volts/Watl

Start 24.0 MHz
RB 3.00 MHz VB 10.0 kHz

l5;." = 40 mA

Mkr #1 Frq 11.33 GHz
468.8 nW

Lightwave Optical

lo'"" = 75 mA

Stop 18.00 GHz
St 1.798 s

loi.. = 57 mA

Mkr #1 Frq 9.15 GHz
-24.36 dBm

Lightwave Electrical

**.---.___&4/

Stop 18.00 GHz
sr 1.798 s

Fig. 16. Effects of optical reflections on the laser intensity
nolse.

FEBRUARy 1990 HEwLETT-pAcrlno ,.rouRrunr 89

It also can induce a ripple on the spectrum with a frequency
that is inversely porportional to the round-trip time from
the laser to the reflection. It should be noted that other
instruments, such as an optical time-domain reflectometer,
can measure the magnitude of a reflection, but the light-
wave signal analyzer is the only instrument that can mea-
sure the'effect of these reflections on the noise characteris-
tic of the laser under test.

An important quantity related to signal-to-noise ratio is
the relative intensity noise (RIN). It is a ratio of the optical
noise power to the average optical power, and is an indica-
tion of the maximum possible signal-to-noise ratio in a
Iightwave system, where the dominant noise source is the
Iaser intensity noise. In the lightwave-optical measurement
mode, the HP 71400A makes the following measurement
when the RIN marker is activated:

RIN : P.oi""P"rg

lvhere P.o;"u is the optical noise power expressed in a 1-Hz
bandwidth, and P"uu is the average optical power. This
measurement can be made directly because of the built-in
power meter function.

Before the development of the lightwave signal analyzer,
customers used a photodiode and a microwave spectrum
analyzer to make this noise measurement, and an ammeter
to monitor the photocurrent. This has led to an alternate
expression of RIN in electrical power units, since these
were the units of the measurement equipment being used.
The HP 71.4oOA has the ability to express this RIN measure-
ment in electrical power units in the lightwave-electrical
measurement mode. Fig. 1,7 shows an RIN measurement
in electrical power units of -te3 dB at 4.65 GHz for this
semiconductor laser. Notice that the noise floor of the HP
71400,\ is 10 dB lower than the laser noise floor in this mea-
surement.

The HP 7L400A can make a number of useful measure-
ments involving large-signal digital modulation of lasers.

RL 16.00 dBm
Atten 0 dB
'10.00 dB/Div
Avg Pwr 15.9 dBm
Marke. RIN
4.65 GHz
-143.18 dBc (1 Hz)
1

Mkr #lAFrq 4.55 GHz
-143.18 dBc (1 Hz)

Lightwave Electrical
Sample

Laser Intensity Noise

BIN Marker

HP 71400A Noise Floor

Fig. 18. Broadband sweep of a laser modulated with a 565-
megabit-pet-second PRBS data pattern.

Fig. 18 shows a laser transmitting pseudorandom binary
sequence (PRBS) intensity modulation at 565 megabits per

second. This sequence is a widely used test signal usually

observed as an eye diagram in the time domain. In the
frequency domain, an envelope that is the Fourier trans-
form of the pulse shape is displayed. Nonideal characteris-

tics, such as clock feedthough, are evident. As shown in

F'ig. 19, a narrower frequency sweep reveals that the signal
is divided into discrete frequencies whose spacing is equal

to the clock rate divided by the sequence length. Noise is

also visible. In fact, different signal-to-noise ratios are ob-
servable as the feedback to the laser is adiusted. It is likely

that this is the only way to measure transmitter-related

Cenier 1.173 GHz
RB 1.00 MHz VB 3.00 kHz

RL -24.00 dBm
Atten 0 dB
3.00 dB/Div
Avg Pwr -16.6 dBm
Marker ,l
554 kHz

Center 250.000 MHz
RB 21.5 kHz VB 1.00 kHz

Span 2.346 GHz
St 10.00 s

Mkr #1A Frq 554 kHz
-0.02 dB

Lighlwave Optical

Span 2.321 MHz
St 323.8 ms

Start 24.0 MHz
RB 3.00 MHz VB 10.0 kHz

Fig. 17. Relative intensity noise (RlN) measurement of a high-
speed /aser.

90 sewLerr-pecKAFD JoURNAL FEBRUAFY 1990

Fig. 19. Narrowband sweep of a laser modulated with a PRBS
data pattern, showing the individual frequency components
and the effect of the polarization of the reflected light on the
signallo-noise.

Stop 10.00 GHz
St 1.798 sec

FL -11 .56 dBm
Atten 5 dB
3.00 dB/Div
Avg Pwr -5.3 dBm

Mkr #1 Frq 566 MHz
-31.24 dBm

Lightwave Optical

Center 11.00 GHz
RB 300 kHz VB 10.0 kHz

Span 22.00 GHz
St 22.00 s

Fig. 20. Modulation spectrum of a pulsed laser.

noise problems under large-signal modulation. In princi-
ple, it is possible to estimate bit error rate from this signal-
to-noise ratio.

High-speed pulse modulation can also be displayed on
the HP 7"I4OOA. Fig. 20 shows the frequency-domain spec-
trum of a laser being driven at 100 MHz and generating
35-picosecond-wide pulses. The spacing between the indi-
vidual discrete frequencies is equal to the pulse repetion
rate. Once again, the envelope is the Fourier transform of
the pulse shape. The pulse width can be determined from
the 3-dB bandwidth, here L2.5 GHz, by assuming the pulse
shape is Gaussian and using the following relationship:

Pulse Width : O.44lOptical 3-dB Bandwidth.

This technique may be just as accurate as measuring the
pulse width on a sampling oscilloscope, where the rise
time of the scope must be deconvolved to get the correct
answer.

Acknowledgments
The development of the HP 7'|.4OOA Lightwave Signal

Analyzer depended on contributions of a number of indi-
viduals, spread over a number of Hewlett-Packard divi-
sions. This project had the potential to be a project man-
ager's nightmare with all the personnel interdependency
and new technology development, along with an aggressive

introduction schedule. It was the dedication and persever-
ance of the following people that made this product hap-
pen. The project team and their responsibilities were: Den-
nis Derickson, microcircuit design, Roberto Collins, digital
design, Jimmie Yarnell, mechanical design, Dave Bailey
and Zoltan Azary, firmware design. The instrument shell
design team completed their portion of the firmware under
significant time constraints. This product was based on a
new technology for Signal Analysis Division, and the effort
of the NPI team to get this product into production was
commendable. The major contributions of this instrument
were dependent on the high-speed pin photodiode, distrib-
uted MMIC amplifier, and TaOu thin-film integrated
^ ^ - ^ ^ : + ^ - + ^ - L - ^ l ^ ^ - , ^ l l l ^ , , ^ I ^ - ^ l L , , a L ^ ^ ' . - : - ^ ^ - ^ ^ +
udPdLrrur rEuuuuruEiy , drr uE v EruPEu uJ Luv vuE,ruEEl) dt

Microwave Technology Division. Portions of the design
were leveraged from existing products with the help of the
engineers at Bdblingen Instruments Division. I would like
to thank Jack Dupre and the rest of the management team
at Signal Analysis Division who supported the develop-
ment of this product. Finally, I would especially like to
acknowledge the efforts of Rory Van Tuyl, who started our
lightwave program at Signal Analysis Division and whose
vision this product reflects.

References
1. W. Radermacher, "A High-Precision Optical Connector for Op-
tical Test and Instrumentation," Hewlett-Packord /ournol, Vol. 38,
no. 2, February L9A7, pp. 28-30.
2. H. Schweikardt, "An Accurate Two-Channel Optical Average
Power Meter," Hewlett-Pockord /ournol, Vol. ss, no. 2, February
1987 , pp . 8 -11 .
3. B. Maisenbacher, S. Schmidt, and M. Schlicker, "Design Ap-
proach for a Programmable Optical Attenuator," Hewlett-Pockord

/ournol , Vol . 38, no. 2, February 1987, pp. 31-35.
4. Product Note 70000-1, HP TOOOO System Design Overview,
Hewlett-Packard Publication No. 5954-9135.
5. pSOS-68K User's Monuoi, The Software Components Group
Inc., Doc. No. PK68K-MAN.
6. W. R. Trutna Jr., D. K. Donald, and M. Nazarathy, "Unidirec-
tional Diode Laser-Pumped Nd:YAG Ring Laser," Optical Letters,
VoI. 12, "1987, pg. 248.
7. T. S. Tan, R. L. Jungerman, and S. S. Elliot, "Calibration of
Optical Receivers and Modulators Using an Optical Heterodyne
Technique," IEEE-MTT-S Internotionol Microwave Symposium
Digest , OO.2,1988, pp. 1067-7O7O.
8, Applicotion Note 377, Lightwave Meqsurements with the HP
77400 Lightwave Signol Analyzer, Hewlett-Packard Publication
No . 5954 -9137 .
9. C. Miller, D. Baney, and J. Dupre, "Measurements on Lasers
for High-Capacity Communication Systems," Hewlett-Packord RF,
Microwave, and Lightwove Meosurement Symposium, 1989.

RL -10.00 dBm
Atten 8 dB
3.00 dB/Drv
Avg Pwr -15.7 dBm
Marker A
12.51 GHz
-2.98 dB
1

Mkr #1AFrq 12.51 GHz
-2,98 dB

Lightwave Optical

FEBRUARy 1 990 HEWLFTT-pAcKAFD JoURNAL 91

Linewidth and Power Spectral
Measurements of Single-Frequency
Lasers
A special fiber optic interferometer preprocesses optical
signals for a lightwave signal analyzer to measure laser
characterisfics using delayed and gated delayed self'
homodyne techniques.

by Douglas M. Baney and Wayne V. Sorin

ITH THE ADVENT OF SEMICONDUCTOR lasers
and low-loss optical f ibers, the possibil i ty of
achievine over 1000-Gbit 'km/s bandwidth-dis-

tance products has propelled research towards improving
the performance of the laser and the optical f iber transmis-
s ion med ium. r To min imize t ransmiss ion pena l t ies resu l t -
ing from dispersion in long optical f iber communication
l inks, high-performance l ightwave communication sys-
tems require lasers that operate in a single longitudinal
mode [i .e., single-frequency osci l lat ion) and have minimal
dynamic l inewidth broadening (i .e., frequency chirp)
under modulat ion. In coherent communications, the lasing
l inewidth becomes an important determinant of system
performance. In the development of FSK modulated sys-
tems, which often rely on modulat ing the inject ion current
to a semiconductor laser, the FM deviat ion as a function
of both inject ion current and modulat ion frequency must
be characterized.

Advances in laser technology necessary to meet the str in-
gent requirements of communications system design have
required simil iar advances in measurement techniques and
technology. The HP 11980A Fiber Optic Interferometer was
developed to work as an accessory to the HP 71400A Light-
wave Signal Analyzer (see art icle, page B0) to enable users
to characterize many important spectral modulat ion prop-
ert ies of single-frequency telecommunication lasers.

Interferometer Design
The function of the HP 119804 is to act as a frequency

discriminator, convert ing optical phase or frequency devia-

t ions into intensity variat ions, which can then be detected
using a square-law photodetector (e.9., the high-speecl
photodiode of the HP 714oo{). Inside the HP 119804 is
an unbalanced f iber optic Mach-Zehnder interferometer
(see Fig. 1). This type of interferometer has an input direc-
t ional coupler, which spl i ts the incoming optical signal
into two equal parts. The two signals then travel along
separate fiber paths where they experience a differential
delay, r. . The two signals are then recombined using
another direct ional coupler. Since the optical f iber does
not preserve the polarization state, a polarization state con-
trol ler is added to one arm of the interferometer. The con-
trol ler is purely mechanical and consists simply of a loop
of f iber that can be rotated. This adlustment al lows the user
to maximize the interference signal by ensuring similar
polarization states at the combining direct ional coupler.
The optical output can then be sent to the HP 714oOA
where intensity variat ions are converted to a t ime-varying
photocurrent, which is displayed on a spectrum analyzer.

The HP 11980A interferometer is completely passive and
has the same adaptable fiber optic connectors as the HP
7L400A. The connectors are compatible with the HMS-10/
HP, FC/PC, ST, biconic, and DIN connector formats. Fused
single-mode f iber direct ional couplers from Gould, lnc.
were chosen for their broad wavelength range from 1250
to 1600 nanometers, enabling coverage of the important
1300-nm and 1550-nm telecommunication windows. One
arm of the interferometer is spl iced to a 730-meter reel of
Corning single-mode optical fiber to provide a differential
delay of 3.5 microseconds. This delay permits laser

HP 11980A Fiber Optic Interferometer HP 71400A
Lightwave Signal

Analyz6r

Fig. 1. D i stributed teedback (D F B)
laser linewidth measurement us-
ing the delayed self-homodyne
technique.

92 HEWLET| PAoKARD JOURNAL FEBRUARY 1990

linewidth measurements as low as 225 kHz florentzian
Iine shapes).

Laser Diode Linewidth
The most basic type of semiconductor laser uses reflec-

tions from cleaved end facets to provide the feedback
needed for laser operation. One disadvantage of this Fabry-

Perot type laser is that it generally operates in several fre-
quency modes, each separated by about 100 GHz. This can
produce effective laser linewidths greater than 500 GHz,
which can limit data rates (because of dispersion) in long-

haul fiber optic communication links. One possible solu-
tion for reducing the effects of dispersion is the develop-

ment of DFB (distributed feedback) and DBR (distributed

Bragg reflector) semiconductor lasers. In these lasers, a
wavelength filter (a diffraction grating) suppresses all but

one of the frequency modes of the laser. The resulting

linewidths for these lasers are typically less than 50 MHz.
Considering that the laser itself oscillates at a frequency of

about 200,000 GHz, this is a relatively small fractional
linewidth.

DFB and DBR lasers have a tendency to change their

operating frequency for different levels of injection current.
This causes the laser to frequency chirp while being
amplitude modulated, which can also result in limited data
rates because of dispersion. The magnitude of these fre-
quency chirps can be in the tens of gigahertz. Measurements

of linewidth and frequency chirp yield important informa-
tion not only about the laser's performance in a lightwave

link, but also about the physical characteristics of the laser
itself.

Measuring Linewidth
The HP 11980A enables measurement of laser linewidth,

Au, by preprocessing the optical signal for the HP 71'4OOA
Lightwave Signal Analyzer. The block diagram of the mea-
surement system is shown in Fig. 1. The single-frequency
Iaser, typically a DFB or DBR laser, is coupled to an optical
fiber. Isolators are often used to reduce perturbations of

S (f) = 5 1 6 1 * t . , t ,

Fig.2. After detection in the HP 71400A Lightwave Signal
Analyzer, the spectrum of the signal from the HP 119804
Fiber Optic lnterferometer is the autocorrelation function
o/ the /aser's electric field spectrum Sr(f). The * indicates
correlation.

the laser by optical feedback arising from optical scattering
in the fiber or at optical interfaces. The signal to be analyzed
is then fed into the unbalanced Mach-Zehnder fiber optic
interferometer inside the HP 11980A. Inside the inter-
ferometer the laser signal is split into two signals, which

experience different delays before being recombined and
sent to the photodiode of the HP 714004. If the differential
delay ro is larger than the coherence time z" of the laser,

Start 500 kHz
RB 100 kHz

(a)

VB 300 Hz

RL -60.00 dBm
Atten 0 dB
2.00 dB/Div
Avg Pwr -18.2 dBm
Reference Level
-60.00 dBm

Start 600.0 MHz
RB 100 kHz VB 300 Hz

Stop 100.0 MHz
St 9.950 s

Mkr #1AFrq 25.5 MHz
-3.00 dB

Lightwave Electrical
Sample

Stop 800.0 MHz
St 20.00 s

(b)

Fig.3. (a) A linewidth measurement for a DFB laser operating
at 1549 nm. The linewidth is approximately 25 MHz. (b) Two-
sided measurement of the same laser linewidth.

RL -44.00 dBm
Atlen 0 dB
2.00 dB/Div
Avg Pwr -18.3 dBm

Se(l) Se(t)

FEBFUARy 1990 HEWLETT-Prcreno lounrunr 93

the two combined signals become uncorrelated. This pro-
cess is equivalent to mixing two separate laser signals, both
having the same linewidth and center frequency. The mix-
ing (i .e., mult iplying) of these two signals is accomplished
as a result of the square-law nature of the photodiode. The
result ing photocurrent spectrum is the autocomelation
function of the laser's electr ic f ield spectrum Su(f and is
commonly referred to as the delayed self-homodyne
linewidth measurement. This process is shown graphical ly
in Fig. 2. Since the displayed spectrum is the autocorrela-
t ion function of the laser's l ine shape, i ts spectral width is
approximately twice that of the laser l inewidth. 'z For the
special case of Lorentzian l ine shapes, the autocorrelat ion
function is also Lorentzian and has a l inewidth exactly
twice that of the original l ine shape. For Gaussian l ine
shapes, the autocorrelat ion function is also Gaussiar-r but
has a l inewidth equal to \4 t imes that of the original l ine
shape. Currently, most single-frequency semiconductor
lasers are accurately described by Lorentzian l ine shapes.

For the delayed self-homodyne measurement to be val id,
the combining signals from the two arms of the interferome-
ter must be uncorrelated. For the HP 11980,t, this means
that the r;oherence t ime of the laser should be less than the
interferometer delay of 3.5 microseconds. Since the coher-
ence t ime is approximately equal to the inverse of the
l inewidth (i .e.,

", ,
: t lLv), the HP 119804 can measure

hnewidths less than 300 kHz.
The signal-to-noise rat io of the displayed photocurrent

spectrum can often be improved by manual adjustment of
the front-panel knob on the HP 11980A. This polarization
state adjustment can increase the interference between the
two mixing signals by ensuring that their polarization states
are closely matched. The shape of the displayed spectrum
is not altered by this adiustment, only i ts size relat ive to
the noise f loor. I t was decided not to automate this adiust-
ment because of the addit ional complexity that would be
required.

Fig. 3a shows a l inewidth measurement for a DFB laser
operating at 1549 nanometers. The l inewidth, Au, is found
by placing the display delta marker at the - 3-dB point
from the peak. The half width is measured, since the au-
tocorrelat ion process doubles the width of the laser's spec-
trum. For the condit ions of Fig. 3a, the laser l inewidth is
measured to be approximately 25 MHz.

It is also possible to display a two-sided l ine shape by
by applying a small amount of amplitude modulation to
the laser and observing the linewidth convolved about one
of the modulat ion sidebands.3 This result is shown in Fig.
3b where the ful l double-width Lorentzian l ine shape is
displayed. The l inewidth is again measured to be about 25
MHz, which agrees with that obtained in Fig. 3a.

Modulated Laser Power Spectrum Measurement
Using a newly developed measurement technique,n the

HP 1 1980A F iber Optic Interferometer can used to measure
laser chirp as well as intentional frequency modulat ion.
Chirp can be thought of as the unwanted frequency devia-
t ion in the optical carr ier of a modulated laser. There exist
a variety of techniques to measure the modulated power
spectrum of a single-frequency laser. These include grating
and Fabry-Perot spectrometers and heterodyne down-con-
version using two lasers. The technique presented here
was developed in response to the shortcomings of previ-
ously known techniques. For example, i t offers superior
frequency resolut ion than grating spectrometers, which in
practice are l imited to a resolut ion of about 1 angstrom
(approximately 15 GHz). Higher resolut ion [i .e., f inesse)
can be achieved with Fabry-Perot spectrometers, but the
wavelength range is l imited for a f ixed pair of mirrors. In
heterodyne techniques, two lasers are required and their
r,r 'avelengths must be preciseiy control led, which often re-
quires a high degree of complexity. The technique pre-
sented in this section overcomes these problems, al lowing
homodyne frequency measurements to be made over a
range of 300 kHz to 22 GHz.

Laser chirp in semiconductor lasers is caused by the
dependence of the real and imaginary parts of the index
of refract ion on the iniect ion current. Because of this effect,
modulation of the injection current can result in large fluc-
tuations of the lasing wavelength. This phenomenon is
responsible for a substantial widening of the electr ic f ield
modulat ion power spectrum, S",(f), beyond the Fourier
transform l imit of the information bandwidth. A wide
power spectrum can impose severe transmission penalt ies
in lightwave links with nonnegligible wavelength disper-
sion. Using the new gated delayed self-homodyne tech-
nique,n a homodyne measurement of S",(f) can be performed
usingthe HP 11980A in conjunction withtheHP 7 14OOA.

HP 11980A HP 7't400A

Gate Inpul
Period = 2ro

Fig.4. Gated delayed self-homo-
dyne technique for measuring laser
f requency chirp and FM deviation.

94 Htwlrrr pAcKARD JouRNAL FEBRUARv 1990

t

I

I

v

Fig. 4 shows the measurement setup. With the laser
biased above threshold, the injection current is gated be-
tween two states, one state modulated and the other state
unmodulated. Thus, the laser behaves as a modulated laser
for a period ro and an unmodulated laser, or local oscillator
signal, for a sequential period ro. The period ro is chosen
to equal the differential delay in the arms of the fiber optic
interferometer, which is assumed to be longer than the
coherence time of the laser. In the HP 11980,\, there is a
continuous combination of a modulated state with an un-
modulated state. These states are then mixed in the photo-
detector of the HP 71,40OA. The power spectrum of the
detector photocurrent, Si(fl, is displayed by the HP 71.4OOA.
The homodyne down-conversion of the optical spectrum
is illustrated in Fig. 5. In this figure, the modulated spdc-
trum is shown to be asymmetrically located around the
average frequency uo. This demonstrates the folding about
zero frequency which is characteristic of homodyne mixing.

This spectrum, S1(fl, for the case where ro) r", can be
approximated as:5

- (A v l r , l
S r (f) : S D (f) + J - _ l * { S - (f) - S - (- f) }((Au)2 + f2 J

where Se(f is the direct intensity modulation that would
be measured if the interferometer were not present, and
the other terms describe the Lorentzian line shape of the
laser crosscorrelated with the homodyne power spectrum
of the lasers's electric field modulation. The ability to make
this measurement while the laser is modulated allows the
determination of the alpha factor,6 which characterizes the
coupling between gain and frequency chirp in semiconduc-
tor lasers.

Figs. 6a and 6b demonstrate some of the experimehtal
results that can be obtained using this gated delayed self-
homodyne technique. In Fig. 6a, the injection current to a
DFB laser is sinusoidally modulated at a rate of 300 MHz.
Besides introducing a small amount of intensity modula-
tion, the optical frequency is also modulated. The modula-

Fig.5. For the gated delayed self-homodyne technique, the
power spectrum of the detector photocurrent is the crosscor-
relation function of the laser electnc field spectrum Sr(f) and
the modulated electric field spectrum S-(f). Homodyne detec-
tion results in the folding of the upper and lower sldebands,
as illustrated in the displayed spectrum.

tion of the optical carrier results in an electric field spec-
trum whose peaks are spaced by 300 MHz and whose
amplitudes are described in terms of Bessel functions as
predicted by classical FM theory. By adjusting the injection
current to null a specific Bessel sideband, the frequency
modulation index B can be determined very accurately.
This technique is useful for accurately determining the
optical FM response at various modulation frequencies.

In Fig. 6b, the modulation frequency was reduced to 45
MHz, which results in a larger FM modulation index for

Start 24.0 MHz
RB 3.00 MHz VB 10.0 kHz

(a)

RL -36.29 dBm

Start 24.0 MHz
RB 3.00 MHz VB 3.00 kHz

(b)

Fig. 6. (a,) Gated delayed self-homodyne power spectrum
for a DFB laser with injection current sinusoidally modulated
at 300 MHz. (b) Same measurement with the modulation fre-
quency reduced to 45 MHz, resulting rn a larger modulatton
index. The two curves represent different sinusoidal drive
currents to the laser, resulting in different degrees of lre-
quency chirping.

RL -28.00 dBm
Atten 0 dB
4.00 dB/Div.
Avg Pwr -21.2 dBm

Jo$l

S.(f) s-(f)

Atten 4 dB
3.00 dB/Oiv
Avg Pwr -16.8 dBm

-/M\,ilr1,rl'd \

FEBRUARy 1990 HEWLETT-pAcxnRD .rouRNnr 95

the laser. The individual sidebands are no longer'resolved

because of the finite linewidth of the laser, and the spec-

trum takes on the shape of the probability density function

for wideband sinusoidal FM modulation. The two curves

in Fig. 6b indicate the progression of laser chirp with in-

creasing modulation power. The difference between these

two curves corresponds to a ratio of optical frequency chirp

to iniection current of +t0 MHz/mA at a modulation fre-

quency of +5 MHz.
The resolution of the technique is approximately equal

to the laser linewidth and therefore can be significantly

superior to that of the Fabry-Perot spectrometer while being

able to operate over a wavelength range of approximately
1250 to 1600 nm. Compared to heterodyne techniques em-
ploying two lasers, this technique has the advantage of

wavelength autotracking between the local oscillator and

the modulated laser, since the same laser is used to generate

both signals.

Summary
The HP 119804 Fiber Optic Interferometer was de-

veloped to enhance the measurement capabilities of the

HP 71400A Lightwave Signal Analyzer. The fiber inter-

ferometer provides the ability to compare an optical signal
with a 3.5-microsecond delayed version of itself . Using this

type of comparision, information can be obtained about

deviations in the optical carrier frequency. This enhance-
ment allows the HP 71.4OOA to measure laser linewidths

as low as 225 kHz and frequency chirp (up to t22 GHz)

over a wavelength range of tzso to 1600 nm.

Acknowledgments
Since the conception of the HP 11980A was based on a

new measurement technique, it required allocation of pre-

viously unscheduled human and material resources. Many
people put in the extra effort needed to make it a reality.
Some key people and their responsibilities are as follows.
Rory Van Tuyl provided indispensable management and
technical support. Scott Conrad and Ron Koo provided

manufacturing and production engineering support. Dean

Carter performed mechanical design. At Hewlett-Packard
Laboratories, Moshe Nazarathy and Steve Newton provided

important technical support.

References
1. N.A. Olsson, G.P. Agrawal , and K.W. Wecht, "16 GbiVs, 70 km
pulse transmission by simultaneous dispersion and Ioss compen-

sat ion wi th 1.5 pm opt ical ampl i f iers," Electronics Let ters, Vol .

25, Apr i l 1989, pp. 603-605.
2. M. Nazarathy, W.V. Sor in, D.M. Baney, and S.A. Newton,
"SpectrAl analysis of optical mixing measurements," lownal of

Lightwove Technology, Vol. LT-7, 19s9, pp. 1083"-1096.

3. R.D. Esman and L. Goldberg, "Simple measurement of laser

diode spectral linewidth using modulation sidebands," Elec-

t ronics Let ters , Vol . 24, October 1988, pp. 1393-1395.

4. D.M. Baney and W.V. Sorin, "Measurement of a modulated

DFB laser spectrum using gated delayed self-homodyne

technique," Electronics Let ters, Yol .24, May 1988, pp. 669-670.

5. D.M. Baney and P.B. Gallion, "Power spectrum measurement

of a modulated semiconductor laser using an interferometric self-
homodyne technique: influence of quantum phase noise and field

correlation," IEEE /ourna.l of Quontum Electronics, Vol. 25,

October 1989, pp. 2L06-2"112.

6. C.H. Henry, "Phase noise in semiconductor lasers," /ournol o/

L ightwove Technology, Vol . LT-4, 1986, pp. 298-311, 1986.

Hewlett-Packard Company, 3200 Hil lview
Avenue. Palo Alto. California 94304

ADDRESS CORRECTION BEQUESTED

Bulk Rate
I I Q P n c f e n o

Paid
Hewlett-Packard

Company

9*1"31frfro- PoNrrs
5UI rE 40e
LT42 SAND H ILL RD
PALO ALTO CA 9130 t1

t

I

CHANGE OF ADDRESS:
5953-8579

To subscribe, chaoge your address, or delete your name from our mailrng l ist, send your request to Hewlett-Packard
Journal, 3200 H I view Avenue Palo Alto, CA 94304 U S A. Include your old address abel, i l any Allow 60 days

